2a-1
10a^{2} -a-2
Мы знаем, что дробь равна нулю, когда числитель равен нулю, а знаменатель - нет.
10а^{2} -a-2\neq 0
Разложим знаменатель на множители, для того, чтобы увидеть: можно ли сократить дробь. А для того, чтобы разложить на множители, мы знаменатель приравняем к нулю и найдём корни квадратного уравнения.
10а^{2} -a-2=0
D=b^{2} -4ac
D=1-4*10*(-2)=1+80=81
\sqrt{D} = \sqrt{81} = 9
a_{1} = 1+9 = 10 = 1 = 0,5
2*10 20 2
a_{2} = 1-9 = -8 = -2 = -0,4
2*10 20 5
Разлаживаем на множители: 10*(a-0,5)(a+0,4).
Теперь подставляем разложеный на множители знаменатель в дробь, а в числителе выносим общий множитель 2 (чтобы мы смогли сократить дробь.
2*(a-0,5)
10*(a-0,5)(a+0,4)
Сокращаем дробь на множитель (a-0,5) - у нас остаётся 1, и на множитель 2 - в числителе останется 1. а в знаменателе 5. Получается:
1
5*(a+0,4)
Скорый поезд проходит 60 км в час а пассажирский 40 км. Найдите расстояние между городами, если скорый поезд преодолевает это расстояние на 2 часа быстрее, чем пассажирский.
ответ: 240 км
Объяснение:
Примем искомое расстояние равным S.
Тогда из формулы расстояние равно скорости, умноженной на время выразим время t=S:v . Скорый поезд проходит расстояние за S:60 часов, пассажирский за S:40 часов.
По условию S:40-S:40=2 часа. Приведя дроби к общему знаменателю, получим :
(3S-2S):120=2 =>
S=240 (км)
ответ: Расстояние между городами 240 км