Арифметическая прогрессия ,значит, каждый следующий член больше предыдущего на определенное число. а2=а1+d a3=а1+d+d
a1+а1+d+а1+d+d=18 3a1+3d=18 3*(a1+d)=18 a1+d=18/3 а1+d=6 - второй член арифм. прогрессии также арифм. прогрессию можно записать как: а1+а2+а3=18 а1+а3+6=18 а1+а3=12 а1=12-а3(это наша будущая подстановка) b2=6+3 b2=9 - второй член геометр. прогрессии теперь воспользуемся свойством геометр. прогрессии (bn)^2=b(n-1)*b(n+1) n-1 и n+1 номер члена прогрессии (b2)^2=(a1+1)*(a3+17) 9^2=(a1+1)*(a3+17) 81=(a1+1)*(a3+17) теперь вводим систему: 81=(a1+1)*(a3+17) а1=12-а3 в 1 уравнение подставим второе 81=(12-а3+1)*(a3+17) 81=(13-а3)*(a3+17) пусть а3=х 81=(13-х)*(х+17) 81=13х +221-х^2-17x 81=-x^2-4x+221 x^2+4x-221+81=0 x^2+4x-140=0 по т. виета х1+х2=-4 х1*х2=-140 х1=10 х2=-14 (не подходит, -14<6,а3<а2, у насвозрастающая) 10=а3 18=10+6+а1 а1=2 ответ: 2,6,10
Теперь посмотрим на таблицу и найдем интервалы, где произведение факторов отрицательно. Это будет интервал (-∞, -6) объединенный с интервалом (1, +∞).
Таким образом, решением неравенства будет -∞ < x < -6, или 1 < x < +∞.
2) 8x² + 24x > 0:
Давайте решим это неравенство, используя метод интервалов.
Сначала заметим, что это неравенство задает параболу, которая открывается вверх, а коэффициенты положительны. Поэтому произведение двух положительных чисел всегда будет положительным.
Таким образом, у нас два случая:
a) Если x > 0, то произведение будет положительным.
b) Если x < 0, то произведение также будет положительным.
Из этого следует, что все значения x являются решением данного неравенства.
Таким образом, решением неравенства является любое значение x.
3) x² < 64:
Чтобы решить это неравенство, найдем корни квадратного уравнения x² - 64 = 0: (x - 8)(x + 8) = 0.
x │ -∞ │ 6 │ +∞
─────────────────────
x - 6 │ - │ 0 │ +
─────────────────────
Теперь посмотрим на таблицу и найдем интервалы, где x² - 12x + 36 больше нуля. В данном случае, такого интервала нет, так как фактор (x - 6) равен нулю при x = 6, и это значит, что x² - 12x + 36 = 0 в точке x = 6.
Таким образом, решением неравенства будет пустое множество.
Я надеюсь, что мои объяснения и пошаговое решение помогли вам понять, как решить эти неравенства. Если у вас есть еще вопросы, не стесняйтесь задавать."