Так как для геометрической прогрессии формула:
b(n-1)*b(n+1)=b(n)*b(n), то можно составить простое уравнение:
(3a+1)*(a-7)=(a+5)^2
Дальше надо решать как квадратное уравнение.
Через общие формулы решения.
Область определения функции. ОДЗ: -00<x<+00
Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0 в x^2+4*x+3.
В решении.
Объяснение:
Лодка по течению проплыла 5 часов и 3 часа против, а за это время она всего проплыла 148 км.
Найти скорость течения реки, если собственная скорость равна 18 км/ч.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость течения реки.
18+х - скорость лодки по течению.
18-х - скорость лодки против течения.
По условию задачи уравнение:
(18+х)*5 + (18-х)*3 = 148
90 + 5х + 54 - 3х = 148
2х = 148 - 144
2х = 4
х = 2 (км/час) - скорость течения реки.
Проверка:
(18+2)*5=100 (км)
(18-2)*3=48 (км)
100+48=148 (км), верно.
(3a+1)*q=a+5 и (a+5)*q=a-7
q=(a+5)/(3a+1)
(a+5)^2=(a-7)(3a+1)
a^2+10a+25=3a^2-21a+a-7
a^2+10a+25-3a^2+20a+7=0
-2a^2+30a+32=0
a^2-15a-16=0
D=(-15)^2-4*(-16)=225+64=289
a1=(15+17)/2=32/2=16
a2=(15-17)/2=-2/2=-1