цифры не повторяются;
В задании говорится о четырехзначных числах, т.е. множества из четырех чисел отличаются как составом чисел, так и их последовательностью, т.е. количество чисел находим по формуле Размещений Amn=n!(n−m)!, где n=6 - общее количество чисел, m=4 - число чисел в выборке.
Находим:
d1=A46=6!(6−4)!=3∗4∗5∗6=360
При этом нужно учесть, что числа не могут начинаться с 0, т.е. это количество чисел (начинающихся с 0) нужно вычесть из полученного количества. Первая цифра этих четырехзначных чисел известна - 0, а остальное количество чисел находим по формуле Размещения, где n=5, m=3, т.к. одна цифра (0) уже использована
d2=5!2!=3∗4∗5=60
Получили, что количество четырехзначных чисел равно D=d1−d2=360−60=300
б) цифры могут повторяться;
В задании говорится о четырех значных числах, цифры которых могут повторятся, множества из четырех чисел с повторениями отличаются как составом чисел, так и их последовательностью, т.е. количество чисел находим по формуле Размещений с повторениями (Amn)сповторениями=nm, где n=6 - общее количество чисел, m=4 - число чисел в выборке при этом нужно учесть, что на первой позиции может быть любое число кроме 0, т.е. возможная выборка - 5 чисел, поэтому количество возможных чисел можно выразить так
D=5∗6∗6∗6=5∗63=1080
6x^2-7x+2>0
6x^2-3х-4х+2>0
3х*(2х-1)-2(2х-1)>0
(3х-2)*(2х-1)>0
{3х-2>0
{2х-1>0
{3х-2<0
{2х-1<0
{х>2/3
{х>1/2
{х<2/3
{х<1/2
Х принадлежит (2/3, +бесконечность)
Х принадлежит (-бесконечность, 1/2)
Х принадлежит (-бесконечность, 1/2) U Х принадлежит (2/3, +бесконечность)
в)
8x^2+10x-3 <0
8x^2+12-2х-3<0
4х*(2х+3)-(2х+3)<0
(4х-1) *(2х+3)<0
{4х-1<0
{2х+3>0
{4х-1>0
{2х+3<0
{х<1/4
{х>-3/2
{х>1/4
{х<-3/2
Х принадлежит (-3/2, 1/4)
Х принадлежит Ø
Х принадлежит (-3/2, 1/4)