М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Zippergorskii
Zippergorskii
02.01.2021 18:15 •  Алгебра

Выполните умножение: а) (3x^2-5)(3x^2+5);
б) (1+4a^3 )(1-4a^3 );
в)(xy^5+9z)(xy^5-9z);
г) (c^2 d-3x^3 )(c^2 d+3x^3 );

Разложите многочлен на множители:
а) 1/25 x^6-64c^2;
б) c^12-36b^14;
в) x^18-y^60;
г) 25x^10-9/16 z^24.

Замените знаки вопроса одночленами так, чтобы получилось верное равенство:
а) (2a-?)(2a+?)=?-9b^10;
б) (?+10b^2 )(?-10b^2 )=25a^2-?;
в) ?-?=(4m^3-?)(?+0,1n^4)
г) (1,1+?)(?-5n^7)=?-?

Вычислите, используя формулы сокращенного умножения:
а (〖53〗^2-〖27〗^2)/(〖79〗^2-〖51〗^2 );
б) 602∙598.

Сократите дробь:
а) (a+a^2)/(a^2-1);
б) (x^2-1)/(x-x^2 ).

👇
Открыть все ответы
Ответ:
MrTraserS
MrTraserS
02.01.2021

2) как известно все углы прямоугольника прямые. <А=<В=<С=<D=90`

С диагоналей разбивает их на прямоугольные треугольники ACD и АВС .

угол ACD равен 60' по условии задачи . А угол D =90' => угол CAD=30'. Итак все углы треугольника АСD известны теперь переходим на треугольник АВО. Т .к. угол А =90' в угол САD=30' угол ВАО=60' . Угол ВЕА =90' в угол BAO=60' значит угол ABE=30'=ЕВО.

По условии задачи ОЕ=4см . По условии прямоугольного треугольника :если один из углов треугольника равен 30' то противоположный катет равен половине гипотенузы. В нашем случае катет лежащий противоположно углу ЕВО=30' это ОЕ=4см

Отсюда следует что гипотенуза ВО=2ОЕ=2×4=8 . Так как точка О середина отрезка BD то ВD=2 ×BO=2×8=16

B прямоугольника диагонали равны значит диагональ АС=ВD= 16 см

Объяснение:

1) \sqrt{9 + 2 \sqrt{20} } - \sqrt{9 - 2 \sqrt{20} } \\ 2 \sqrt{20} = 2( \sqrt{5} \times \sqrt{4} ) \\ { \sqrt{5} }^{2} + { \sqrt{4} }^{2} = 5 + 4 = 9 \\ \sqrt{9 + 2 \sqrt{20} } = \sqrt{ {( \sqrt{5} + \sqrt{4} )}^{2} } \\ \sqrt{9 - 2 \sqrt{20} } = \sqrt{ {( \sqrt{5} - \sqrt{4} ) }^{2} } \\ \sqrt{5} + \sqrt{4} - ( \sqrt{5} - \sqrt{4} ) = \sqrt{5} + \sqrt{4} - \sqrt{5} + \sqrt{4} = 2 + 2 = 4

4,6(37 оценок)
Ответ:
DedPerdun
DedPerdun
02.01.2021

2) как известно все углы прямоугольника прямые. <А=<В=<С=<D=90`

С диагоналей разбивает их на прямоугольные треугольники ACD и АВС .

угол ACD равен 60' по условии задачи . А угол D =90' => угол CAD=30'. Итак все углы треугольника АСD известны теперь переходим на треугольник АВО. Т .к. угол А =90' в угол САD=30' угол ВАО=60' . Угол ВЕА =90' в угол BAO=60' значит угол ABE=30'=ЕВО.

По условии задачи ОЕ=4см . По условии прямоугольного треугольника :если один из углов треугольника равен 30' то противоположный катет равен половине гипотенузы. В нашем случае катет лежащий противоположно углу ЕВО=30' это ОЕ=4см

Отсюда следует что гипотенуза ВО=2ОЕ=2×4=8 . Так как точка О середина отрезка BD то ВD=2 ×BO=2×8=16

B прямоугольника диагонали равны значит диагональ АС=ВD= 16 см

Объяснение:

1) \sqrt{9 + 2 \sqrt{20} } - \sqrt{9 - 2 \sqrt{20} } \\ 2 \sqrt{20} = 2( \sqrt{5} \times \sqrt{4} ) \\ { \sqrt{5} }^{2} + { \sqrt{4} }^{2} = 5 + 4 = 9 \\ \sqrt{9 + 2 \sqrt{20} } = \sqrt{ {( \sqrt{5} + \sqrt{4} )}^{2} } \\ \sqrt{9 - 2 \sqrt{20} } = \sqrt{ {( \sqrt{5} - \sqrt{4} ) }^{2} } \\ \sqrt{5} + \sqrt{4} - ( \sqrt{5} - \sqrt{4} ) = \sqrt{5} + \sqrt{4} - \sqrt{5} + \sqrt{4} = 2 + 2 = 4

4,7(41 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ