Постройте график функции y=x2. С графика найдите: а) значения функции при значении аргумента, равном -4;0;2; б) значения аргумента, если значение функции равно 1;0;9; в)наибольшее и наименьшее значения функции на отрезке [-1;2]; г) значения аргумента, при которых 1<y<9если у = 9, то х =3, х=-3если у = 1, то х =1, х=-1если у = 0, то х =0Значения функции определяются по графикуу=х2 = 2 в квадрате = 4у=х2=(-4)2 = 16у=х2 = 0 в квадрате = 0Находим значния функцииНаибольшее значение функции равно 4, при х =2Находим значение аргументаНаименьшее значении функции равно 0, при х=0график этой функции является парабола с центром точке (0;0)
x+y=4 x^2 - y^2 = 8
y = 4 - x Подставляем x^2 - (4-x)^2 = 8
y = 4- x Подносим к степени. Присутствует форма сокращенного умножения. x^2 - (16 - 8х + x^2) = 8
y = 4 - x x^2 - 16 + 8x - x^2 = 8
y = 4-x x^2 Сокращается 8x = 8 + 16
y = 4 - x 8x = 24
y = 4 - x x = 3
Так как из второго уравнения системы мы уже знаем, чему равен ноль - также подставляем.
y = 4 - 3 x = 3
y = 1 x=3