Тут рулят , кажется, если не забыл, формулы привидения. sin315°= sin(360°-45°)= -sin(45°) // тут стоит минус, так как наша функция находится в 4-ой четверти, синус это же игрек на системе координат, а игрек в 4-ой четверти отрицательный. 2 | 1
3 | 4 схематичная система координат )) тут я показал где находятся четверти.
cos315°= cos(360°-45°)= +cos45° // тут стоит плюс, так как косинус это икс и он в 4-ой четверти положительный.
tg(315°) = tg(360°-45°)= -tg(45°) // тут стоит минус, так как тангенс в 4-ой четверти отрицательный, тангенс это sin÷cos или y÷x, в нашем случаи будет так: tg(360°-45°)= -sin45°÷cos45°= -tg45°
ctg(315°) = ctg(360°-45°)= -ctg(45°) // тут все тоже самое, что и в tg , но только катангес это cos÷sin или x÷y => ctg(360°-45°)= cos45°÷(-sin45°)= -ctg45°
Графиками будут является прямые , к1 не равно к2 поэтому прямые пересекутся, координаты точки пересечения и будут решением системы. Для построения прямой достаточно 2 точек. У=1/3х - 8/3 Пусть Х=0 тогда У=1/3*0 - 8/3= 8/3= -2 2/3 А(0;-2 2/3)
Пусть Х=2 тогда У=1/3*2-8/3= 2/3-2 2/3 = -2. В(2;-2) Через точки А и В проведи прямую
У=2/3х -10/3 Пусть Х =0 у= - 3 1/3 С(0; -3 1/3) Х= 1 У=2/3*1 - 3 1/3= - 2 /2/3 D(1; -2 2/3) Через точки С и D проведи прямую они пересекутся, из точки пересечения опусти перпендикуляры на оси Х и У это и будет решение.
sin315°= sin(360°-45°)= -sin(45°) // тут стоит минус, так как наша функция находится в 4-ой четверти, синус это же игрек на системе координат, а игрек в 4-ой четверти отрицательный.
2 | 1
3 | 4
схематичная система координат )) тут я показал где находятся четверти.
cos315°= cos(360°-45°)= +cos45° // тут стоит плюс, так как косинус это икс и он в 4-ой четверти положительный.
tg(315°) = tg(360°-45°)= -tg(45°) // тут стоит минус, так как тангенс в 4-ой четверти отрицательный, тангенс это sin÷cos или y÷x, в нашем случаи будет так: tg(360°-45°)= -sin45°÷cos45°= -tg45°
ctg(315°) = ctg(360°-45°)= -ctg(45°) // тут все тоже самое, что и в tg , но только катангес это cos÷sin или x÷y => ctg(360°-45°)= cos45°÷(-sin45°)=
-ctg45°