Дано уравнение: x=−7x+40x−10 Домножим обе части ур-ния на знаменатели: -10 + x получим: x(x−10)=1x−10(−7x+40)(x−10) x(x−10)=−7x+40 Перенесём правую часть уравнения в левую часть уравнения со знаком минус.
Уравнение превратится из x(x−10)=−7x+40 в x(x−10)+7x−40=0Раскроем выражение в уравнении x(x−10)+7x−40=0Получаем квадратное уравнение x2−3x−40=0 Это уравнение вида a*x^2 + b*x + c. Квадратное уравнение можно решить с дискриминанта. Корни квадратного уравнения: x1=D‾‾√−b2a x2=−D‾‾√−b2a где D = b^2 - 4*a*c - это дискриминант. Т.к. a=1 b=−3 c=−40 , то D = b^2 - 4 * a * c = (-3)^2 - 4 * (1) * (-40) = 169 Т.к. D > 0, то уравнение имеет два корня. x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) или x1=8 x2=−5
21.20 а) 36 б) 144
21.21 а) 48 б) 1000000
21.22 а) > б) <
21.23 а) 2 б) -1
21.24 а) -3
Объяснение:
21.20 а) 2^8 * 3^8 / 6^6 =
(2*3)^8 / 6^6 =
6^8 / 6^6 =
= 6^2 = 36
б) 3^5 * 4^5 / 12^3 =
(3*4)^5 / 12^3 =
12^5 / 12^3 =
= 12^2 = 144
21.21 а) 16^3 * 3^3 / 48^2 =
(16*3)^3 / 48^2 =
48^3 / 48^2 =
= 48^1 = 48
б) 10^12 / 2^6 * 5^6 =
10^12 / (2*5)^6 =
10^12 / 10^6 =
= 10^6 = 1000000
21.22 а) (10*x)^5 > 10*x^5
б) (x/2)^7 < x^7/2
21.23 а) 3x^3 = 24
x^3 = 24/3
x^3 = 8
x = 2
б) (3x)^3 = -27
27x^3 = -27
x^3 = -27/27
x^3 = -1
x = -1
21.24 а) ((2x)^5 * (2x)^3 * 2)/((4x)^3 * 8x^4) = -3
(32x^5 * 8x^3 * 2)/(64x^3 * 8x^4) = -3
(64x^5 * 8x^3)/(64x^3 * 8x^4) = -3
x^2/x = -3
x = -3