Обозначим cлагаемые за Х,У,Z
(X+Y+Z)/3>=1
Согласно неравенству о среднем арифметическом и среднем геометрическом достаточно доказать :
ХУZ>=1
Вернемся к исходным обозначениям
8abc>=(a+b)(b+c)(a+c)
Снова согласно неравенству о среднем арифметическом и среднем геометрическом видим
a+b>=2sqrt(ab) b+c>=2sqrt(сb) (a+c)>=2sqrt(ac)
поэтому можим заменить сомножители справа на произведение
2sqrt(ab)*2sqrt(aс)*2sqrt(сb)=8abc, что и доказывает неравенство.
Равенство достигается только при а=с=b
Область определения функции определится по условиям, что знаменатель не может быть нулем, а под корнем не должно быть отрицательное число.
а) 16x²-49<>0
(4x-7)(4x+7)<>0
4x<>7
x<>7/4
4x<>-7
x<>-7/4
x ∈ (-∞;-7/4)U(-7/4; 7/4)U(7/4; +∞)
y ∈ (-∞; +∞)
б) x²+4x+3>0
найдем корни
x²+4x+3 = 0
По теореме Виета
х1 = -3
х2 = -1
(x+3)(x+1)>0
x+3>0, x>-3
x+1>0, x>-1
x > -1
x+3<0, x<-3
x+1<0, x<-1
x < -3
x ∈ (-∞; -3]U[-1; +∞)
Поскольку подразумевается арифметический корень, то у ∈ [0; +∞)
Объяснение:
Решим рациональное уравнение, комбинируя выражения и выделяя переменную
x.
Точная форма:
x=−218
Десятичный вид:
x=−2.625
В форме смешанного числа:
x=−258
надеюсь правильно