М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
stik6
stik6
09.05.2021 12:43 •  Алгебра

Представь многочлен в виде куба двучлена:     а)m3 + 6m2n + 12mn2 + 8n3 ​

👇
Ответ:
liana2015
liana2015
09.05.2021

Объяснение:

a) (m + 2n)^3

4,4(94 оценок)
Открыть все ответы
Ответ:
lol2710
lol2710
09.05.2021
1) a+b+c=0 => a+b=-c => (a+b)³=(-c)³ => a³+3a²b+3ab²+b³=-c³ =>
=> a³+b³+c³=-(3a²b+3ab²) => a³+b³+c³=-3ab(a+b) => a³+b³+c³=-3ab(-c) =>
=> a³+b³+c³=3abc
2) Обратное утверждение:
Если a³+b³+c³=3abc, то a+b+c=0 (думаю, имеется в виду, что a+b+c обязательно будет равно 0, и не существует других вариантов).
Из утверждения следует, что c³-3abc+a³+b³=0. Допустим, известны числа a и b. Тогда c³-3abc+a³+b³=0 является кубическим уравнением относительно c. Как известно, любое кубическое уравнение с рациональными коэффициентами имеет ровно три корня (необязательно действительных). Отсюда следует, что при фиксированных a и b и при 3-х вариантах c получится три варианта для суммы a+b+c, одним из которых является a+b+c=0.
Таким образом, пункт 1 является верным. Пункт 2 не является верным.
Найдем другие два варианта для c.
Известно, что в уравнении c³-3abc+a³+b³=0 одним из решений является c=-(a+b), так как при подстановке в уравнение получится тождество. Разложим левую часть уравнения на скобки:
c³-3abc+a³+b³=(a+b+c)(c²-c(a+b)+a²-ab+b²).
Решим уравнение c²-c(a+b)+a²-ab+b²=0 относительно c:
D=(-(a+b))²-4(a²-ab+b²)=a²+2ab+b²-4a²+4ab-4b²=-3(a²-2ab+b²)=-3(a-b)²≤0
c1,2=((a+b)+-√3(a-b)*i)/2, где i²=-1, i - мнимая единица.
Если D=0, то a=b, а выражение для c примет такой вид: c=(a+b)/2=(a+a)/2=a. Получим, что в этом случае a=b=c, а сумма a+b+c=3a для любого a.
Если D<0, то c1=(a+b)/2+i√3(a-b)/2,
c2=(a+b)/2-i√3(a-b)/2.
А возможные варианты для суммы станут такими:
a+b+c=a+b+(a+b)/2+i√3(a-b)/2=3(a+b)/2+i√3(a-b)/2,
или
a+b+c=a+b+(a+b)/2-i√3(a-b)/2=3(a+b)/2-i√3(a-b)/2
4,4(93 оценок)
Ответ:
6дкоув
6дкоув
09.05.2021

4

Запишем условие:

lgx + lg(x - 2) = lg(12 - x)

Складываем логарифмы в левой части, тогда:

lgx(x - 2) = lg(12 - x)

Так как 1 основание, решаем как обычное уравнение:

х(х - 2) = 12 - х

Раскороем скобки слева, откуда:

х^2 - 2х = 12 - х

Переносим правую часть влево, тогда:

х^2 - 2х - 12 + х = 0

Приводим подобные:

х^2 - х - 12 = 0

Решаем через дискриминант:

Находим дискриминант:

D = b^2 - 4ac

D = 1 - 4*1*(-12)

D = 1 - (-48)

D = 1 + 48 = 49

sqrt(D) = sqrt(49) = 7

x1 = (-b + sqrt(D))/2a = (1 + 7)/2 = 8/2 = 4

x2 = (-b - sqrt(D))/2a = (1 - 8)/2 = -3,5 - посторонний корень

Проверка:

Проверяем х1:

lg4 + lg(4 - 2) = lg(12 - 4)

lg4 + lg2 = lg8

Складываем логарифмы слева, тогда:

lg(4*2) = lg8

lg8 = lg8

Следовательно, х1 является действительным (правильным) корнем уравнения.

Проверяем х2:

lg(-3,5) + lg(-3,5 - 2) = lg(12 - 3,5)

lg(-3,5) + lg(-5,5) = lg8,5

Складываем логарифмы в левой части, тогда:

lg(19,25) > lg8,5

Следовательно, х2 посторонний корень данного уравнения.

4,6(95 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ