Заметим, что в системе х встречается только во второй степени. Поэтому, если некоторая пара (х; у) - решение системы, то и пара (-х; у) - решение системы. Так как по заданию система должна иметь только одно решение, то необходимо выполнение условия х=-х. Это достигается только при х=0. Подставляя значение х=0 в систему, получим: Проверим, удовлетворяют ли значения р=1 и р=-1 условию. При р=1: Данный случай не подходит, так как система имеет три решения. При р=-1: Данный случай подходит, система действительно имеет одно решение. Кроме того, можно было построить графики уравнений: - окружность с центром в точке (0; 0) и радиусом 1 - стандартная парабола ветвями вниз с вершиной в точке (0; р). Двигая эту параболу вдоль оси ординат, можно убедиться, что единственное пересечение с окружностью происходит лишь при р=-1. ответ: р=-1
Объяснение:
5^8n-16=(5^4n+4)×(5^4n-4)=(625^n-4)(625^n+4)=
=(25^n+2)(25^n-2)(625^n+4)