Так как течение реки одинаково действует на обе лодки, то на время их встречи оно не влияет. И, в системе отсчета, связанной с рекой, лодки одинаковое расстояние по 64 км. Скорость лодки в стоячей воде: v = S/t = 64 : 2 = 32 (км/ч) В системе отсчета, связанной с берегом реки, лодки пройдут разное расстояние, так как скорости лодок относительно берега будут различны: скорость лодки, идущей по течению: v₁ = v + v₀ = 32 + 2 = 34 (км/ч) скорость лодки, идущей против течения: v₂ = v - v₀ = 32 - 2 = 30 (км/ч)
Поэтому первая лодка пройдет до места встречи, относительно берега: S₁ = v₁t = 34 * 2 = 68 (км) - по течению Вторая лодка пройдет относительно берега: S₂ = v₂t = 30 * 2 = 60 (км) - против течения
PS. Уточнение "относительно берега" желательно в ответе, поскольку относительно воды лодки равное расстояние. В этом легко убедиться, если в момент старта лодок, на половине расстояния между пристанями, спустить на воду плот. Обе лодки достигнут плота одновременно.
тогда сторона 1-го квадрата = х+3.
S 2 (площадь 2-го квадрата) = х3
S 1 (площадь 1-го квадрата) = (х+3) в кв.
S1=(х+3)^2.
х^2 +6х + 9
Данное значение приривниваем к 0 и ищем по дискриминанту
х^2 + 6х + 9 = 0
а=1 в=6 с=6
Д=6^2 - 4×1×9 = 36 - 36 = 0
х=-3 но так как сторона квадрата не может быть равна -3, то минус просто отбпасываем.
Выходит, что сторона 2-го квадрата = 3, ТОГДА СТОРОНА 1-ГО КВАДРАТА = 3+3=6
Периметр (далее - Р) - это сумма всех сторон квадрата.
Значит Р 1-го квадрата = 6+6+6+6=24
Р 2-го квадрата= 3+3+3+3=12
Можно выполнить проверку при желании. S2= х^2 = 3^2 = 6
24-12=12 S1 больше S2