Объяснение:
У нас есть последовательность и нужно найти является ли какое то число членом этой последовательности. Для этого достаточно приравнивать формулу для последовательности и наше число. Если получится целый n то число является членом если получится не целое то число не является членом последовательности.
1)n^2-4=16
n=2√5
Это значит что 16 не является членом последовательности потому что член последовательности не может быть иррацинальным.
2)n^2-4=77
n^2=81
n=±9
Значит 77 является членом последовательности.
Решим неравенства:
(1) x > 35
(2) x ≤ 99
(3) x > 8
(4) x ≥ 10
(5) x > 5
Если верно неравенство (1), то автоматически верны неравенства (3), (4) и (5), и верных неравенств не меньше 4, хотя по условию их только 3. Значит, неравенство (1) неверно, x ≤ 35, откуда следует, что неравенство (2) верно.
Среди оставшихся неравенств (3), (4) и (5) должны быть два верных и одно неверное. Если верно неравенство (4), то сразу же верны и остальные неравенства, чего быть не должно, поэтому неравенство (4) неверно, а неравенства (3) и (5) верны.
Системе неравенств 5 < 8 < x < 10 ≤ 35 ≤ 99 удовлетворяет единственное натуральное число x = 9.
ответ. x = 9
Найдем дискриминант
D=25 это корень 5
х1,2=-b+/-5/2=
х1=9+5/2=7
х2=9-5/2=2
7-2=5 понятно надеюсь))