Когда говорят упростить выражение, подразумевают конкретные математические действия с этим выражением, в результате чего оно примет иной вид.
Такими действиями могут быть раскрытие скобок, внесение и вынесение множителя за скобку, деление (сокращение), умножение, возведение в степень, приведение дробей к общему знаменателю и много других операций.
При этом часто используют формулы сокращенного умножения и теоремы, а в тригонометрии от простых формул приведения до самых сложных тригонометрических выражений.
Чем старше школьник, тем больше формул он знает и обладает богатым арсеналом математических действий.
В чем смысл таких действий
Задачи на упрощение выражений встречаются с самых младших классов. Дети сами того не осознавая, учатся шевелить мозгами в нужном направлении, чтобы преобразовать одно выражение в другое.
Разумеется, все задания составляются таким образом, что в любом случае они приводятся к более простому виду или подходящему для дальнейших операций.
Однако, при таком подходе теряется общий смысл поставленной задачи.
Когда ученик слышит, что надо что-то упростить, то машинально начинает перебирать всевозможные математические действия в голове, не задаваясь вопросом, а для чего упрощать?
Приведем наглядный пример
Допустим, сказано упростить выражение (a+b)2. В этом случае абсолютно каждый нормальный школьник раскроет скобки и будет доволен самим собой. Без сарказма это действительно так и это нормально.
Но вот другая постановка задачи: упростите выражение (a+b)2, затем подставьте следующие числовые значения a=⅔, b=⅓ и запишите получившееся число.
Кто теперь скажет, что раскрыть скобки, затем подставить a=⅔ и b=⅓, а затем вычислить ответ, это легче, чем сразу найти a+b=⅔+⅓=1? После этого возводи единицу хоть в сотую степень!
Заключение
Итак, главная цель задач на упрощение выражений в том, чтобы научить вас применять те или иные математические действия над выражениями.
Это обязательно нужно уметь делать. Но более важная проблема в том, чтобы научиться применять необходимые действия в нужный момент и воспользоваться результатом преобразования.
Благо есть онлайн калькуляторы упрощения выражений, например, такой как наш, с которого можно проверить свои вычислительные результаты.
Скорость в против течения будет равна 7-3=4 км/ч (так как идет замедление,раз против течения) . Скорость его обратно будет по течению , значит 7+3=10 км/ч . Пусть расстояние будет равно х , тогда мы получаем уравнение : ( 4км/ч +10 км/ч ) * 3,5 ч ( 3,5 , а не 4,5 так как он отдыхал час и не двигался по реке , значит нам этот час отдыха не пригодиться для вычисления расстояния) = 2х ( 2х - потому что сначала в одну сторону, а потом в другую, то есть два одинаковых расстояния) , решаем : 14*3,5 =2х , 49=2х, значит х = 24,5 км . ответ : 24,5 км
Когда говорят упростить выражение, подразумевают конкретные математические действия с этим выражением, в результате чего оно примет иной вид.
Такими действиями могут быть раскрытие скобок, внесение и вынесение множителя за скобку, деление (сокращение), умножение, возведение в степень, приведение дробей к общему знаменателю и много других операций.
При этом часто используют формулы сокращенного умножения и теоремы, а в тригонометрии от простых формул приведения до самых сложных тригонометрических выражений.
Чем старше школьник, тем больше формул он знает и обладает богатым арсеналом математических действий.
В чем смысл таких действий
Задачи на упрощение выражений встречаются с самых младших классов. Дети сами того не осознавая, учатся шевелить мозгами в нужном направлении, чтобы преобразовать одно выражение в другое.
Разумеется, все задания составляются таким образом, что в любом случае они приводятся к более простому виду или подходящему для дальнейших операций.
Однако, при таком подходе теряется общий смысл поставленной задачи.
Когда ученик слышит, что надо что-то упростить, то машинально начинает перебирать всевозможные математические действия в голове, не задаваясь вопросом, а для чего упрощать?
Приведем наглядный пример
Допустим, сказано упростить выражение (a+b)2. В этом случае абсолютно каждый нормальный школьник раскроет скобки и будет доволен самим собой. Без сарказма это действительно так и это нормально.
Но вот другая постановка задачи: упростите выражение (a+b)2, затем подставьте следующие числовые значения a=⅔, b=⅓ и запишите получившееся число.
Кто теперь скажет, что раскрыть скобки, затем подставить a=⅔ и b=⅓, а затем вычислить ответ, это легче, чем сразу найти a+b=⅔+⅓=1? После этого возводи единицу хоть в сотую степень!
Заключение
Итак, главная цель задач на упрощение выражений в том, чтобы научить вас применять те или иные математические действия над выражениями.
Это обязательно нужно уметь делать. Но более важная проблема в том, чтобы научиться применять необходимые действия в нужный момент и воспользоваться результатом преобразования.
Благо есть онлайн калькуляторы упрощения выражений, например, такой как наш, с которого можно проверить свои вычислительные результаты.
Желаем успехов!