Вначале необходимо найти производную и приравнять ее к 0 для нахождения экстремумов:
y' = (6cosx)' = -6*sinx = 0, sinx=0, x=pi/2 + pi*k
Дан промежуток [-pi/2; 0], необходимо определить, какие именно точки из множества решений попадают в него:
k=-1, x=pi/2-pi=-pi/2 - принадлежит промежутку
Является ли х=-pi/2 - экстремумом? - посчитать знак производной ДО и ПОСЛЕ этой точки: производная меняет свой знак с плюса на минус: х=-pi/2 - максимум функции.
На [-pi/2; 0] функция убывает, значит наибольшее значение y(-pi/2)=0, наименьшее значение y(0)=6
отмечаем точку О, стрелками положительное направление: вправо и вверх,
подписываем оси: вправо - ось х и вверх - ось у
отмечаем единичные отрезки по каждой из осей в 1 клетку.
Отмечаем данную точку А(-3; 3)
Чертим прямую х=-2, для этого отмечаем две точки, например В(-2; 2) и С(-2; 4) .
Из точки А проводим перпендикуляр АН к прямой с угольника и продолжаем его дальше прямой; отмеряем на продолжении перпендикуляра расстояние, равное АН и ставим точку Д. Находим координаты точки Д. Получаем Д(-1; 3) - симметрична А относительно прямой х=-2