||2^x+x-2|-1| > 2^x-x-1 Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты))) Помним о важном правиле: |x| =x, если x>=0 |x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу: {|2^x+x-2|-1 >2^x-x-1 {|2^x+x-2|-1> -2^x+x+1 Переносим "-1" из левой части в правую: {|2^x+x-2| > 2^x-x {|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу: {2^x+x-2>2^x-x {2x-2>0 {2^x+x-2>x-2^x {2*2^x-2>0 {2^x+x-2>-2^x+x+2 {2*2^x-4>0 {2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1 {2^x>1 {x>0 {2^x>2 {x>1 {x>0 {x>0
Решением неравенства является промежуток (1; + беск.)
1/3Х+1/9Х^2 + 6X=2 приводим дроби к общему знаменателю, общий знаменатель -число,которое делится на каждый знаменатель дроби в уравнении, это число 9. Делим 9 на знаменатель каждой дроби: 9:3=9, 9:9=1, 9:1=9, умножаем числители каждой дроби на полученное значение и складываем их. получаем: (3Х+Х^2+54Х)/9 = 2 57Х + Х^2 = 18 Переносим число 18 в левую часть уравнения и приравниваем к нулю, получается стандартное квадратное уравнение типа ах^2 + bx + c = 0: Х^2 + 57Х - 18 = 0 в нашем случае а=1, в=57, с= -18 для решения квадратных уравнений существуют специальные формулы. для начала нужно вычислить дискриминант этого уравнения по формуле D = в^2 - 4ас, чтобы узнать, по какой схеме искать корни уравнения и сколько их может быть в данном уравнении: D=57^2 - 4*1*(-18)=3249 + 72= 3321 по правилам, если дискриминант больше нуля, то уравнение имеет два корня, то есть два значения Х, и они вычисляются по формуле: Х1,Х2 = (-B = + - КОРЕНЬ из (В^2 - 4ас)) / 2а подставляем в эту формулу наши значения а,в,с: Х1= (-57 + КОРЕНЬ из (57^2 -4*1*(-18))) / 2*1 Х1= (-57+КОРЕНЬ из 3249+72) / 2 Х1= (-57+ 57,63) / 2 Х1 = 0,314 таким же образом подставив те же значения для Х2, только уже в числителе будет разница, а не сумма: Х2= (-57-57,63) / 2 Х2 = - 57,315
(3+2x-x²)/(x+1)≥0
3+2x-x²=0
x²-2x-3=0
x=-1 x=3
ответ: (-∞;-1) [3;+∞)