Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.] Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см. Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.
нужно рассматривать две разных ситуации:
1) x>=0
тогда y = 2x - 1/2 x^2 - x = - 1/2 x^2 + x
парабола, ветви вниз, корни 0 и 2
т.е. справа от оси У рисуем только часть этой параболы (от х=0)
2) x < 0
тогда у = 2*(-х) - 1/2 x^2 - (-x) = -2x -1/2 x^2 + x = -1/2 x^2 - x
парабола, ветви вниз, корни 0 и -2
т.е. слева от оси У рисуем только часть этой параболы (до х=0)
(получится похоже на то, как птицу-чайку рисуют ---два крыла...)
а вот про прямую у = kx ---точка (0; 0) принадлежит графику... и прямой с любым k...
т.е. общая точка будет всегда (т.е. нет таких k...)