Для того чтобы найти промежутки возрастания и убывания необходимо взять производна от данной функции и решить следующие неравенстваy' (x) 0 при х удовлетворяющих этому неравенству функция возрастает Найдем y' (x) = (0.5cos (x) - 2) '=-0.5sin (x) Теперь решим неравенство:-0.5sin (x) 0 Это неравенство имеет решения при Значит на этих интервалах функция убывает. Теперь рассмотри неравенство - 0.5sin (x) >0 оно эквивалентно неравенству: sin (x) <0 И имеет следующие решения: Значит на этих интервалах функция возрастает. На границах интервалов функция имеет точку перегиба. ответ: Функция y=0,5cos (x) - 2 возрастает при Убывает при И имеет точки перегиба при
Далее по т. о касательных, а так же зная, что трапеция равнобокая, мы имеем AC=12, AB=CD=x+6 BC=2x Находим по формуле длину отрезка между высотой из угла при меньшем основании и углом при большем основании: АС-ВС/2 = 6-х Так как высота - перпендикуляр, можно утверждать, что по т. Пифагора: (x-6)^2+h^2=(x+6)^2 т. е. 36+12х+х^2-36+12x-x^2=h^2 => 24x=36 => x=1.5 Далее вычисляем основания и считаем площадь: (12+3/2)*6=45 ответ: S=45 ед^2