Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
Задать во Войти

Аноним
Геометрия
11 марта 21:01
периметр прямоугольника равен 46 см,а диагональ-17 см.Найдите стороны прямоугольника
ответ или решение1

Егоров Михаил
Для того, чтобы найти стороны прямоугольника рассмотрим прямоугольный треугольник, который образован двумя сторонами прямоугольника и диагональю.
Нам известен периметр прямоугольника 46 см. Формула для нахождения периметра:
P = 2(x + y), x и y — длина и ширина прямоугольника.
2(x + y) = 46;
x + y = 46 : 2;
x + y = 23.
y = 23 - x;
Теперь применим теорему Пифагора:
x2 + (23 - x)2 = 172;
x2 + 529 - 46x + x2 = 289;
2x2 - 46x + 529 - 289 = 0;
2x2 - 46x + 240 = 0;
x2 - 23x + 120 = 0.
Решаем квадратное уравнение и получаем:
D = 49;
x1 = 15; x2 = 8.
Итак, x = 15; y = 23 - 15 = 8.
x = 8; y = 23 - 8 = 15.
ответ: 8 см; 15 см.
ДАЙ ДАЙ БЫЛЛЫ ДАЙ