Тогда так: Сумма минус трех целых пяти десятых и четырех целых пяти десятых равна одной целой. Что бы это решить мне потребовалось сделать следующее - Найти модули слагаемых. Затем из большего модуля вычитаем меньший, если больший модуль был отрицательным числом (модули - это всегда положительные числа. Здесь имелось ввиду число до превращения в модуль), то разность модулей будет отрицательной. А если больший модуль остался числом положительным, то разность будет положительная. В нашем случае мы пользуемся последним и поэтому ответ будет одна целая(четыре целых пять десятых минус три целых пять десятых равняется одной целой).
В решении.
Объяснение:
Решите задачу с составления уравнения. Разность двух чисел равна 3, а разность их квадратов 69. Найдите эти числа.
х - первое число.
у - второе число.
По условию задачи система уравнений:
х - у = 3
х² - у² = 69
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = 3 + у
(3 + у)² - у² = 69
9 + 6у + у² - у² = 69
6у = 69 - 9
6у = 60
у = 60/6
у = 10 - второе число.
х = 3 + у
х = 3 + 10
х = 13 - первое число.
Проверка:
13 - 10 = 3, верно.
13² - 10² = 169 - 100 = 69, верно.