М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
фиаско123
фиаско123
31.12.2020 01:42 •  Алгебра

Уравнение:
x^2 - 2x + 1 = 0

👇
Ответ:
псдрпл
псдрпл
31.12.2020

х^2-2х+1=0

(х-1)^2=0

х-1=0

х=1

4,7(18 оценок)
Открыть все ответы
Ответ:
Galina2617
Galina2617
31.12.2020

Вычисли значения выражений 45+27: 3 - 12 90-36: 3 x 2 84:4 x 3+2 100-10x9-8 17+15x3x0 5x5+75:5 17x3+2x10 80-5x2:10 72:6+6x5 2)Измени порядок действий с скобок и вычисли значения полученных выражений. Попроси больше объяснений. Следить. ... Изменим порядок действий и вычислим новые значения выражений: (45+27): 3 - 12 =12. 90-36:(3*2) =84. 84:(4*3)+2 =9. 100-(10*9-8) =18. (17+15)*3*0 =0.

Объяснение:

Вычисли значения выражений 45+27: 3 - 12 90-36: 3 x 2 84:4 x 3+2 100-10x9-8 17+15x3x0 5x5+75:5 17x3+2x10 80-5x2:10 72:6+6x5 2)Измени порядок действий с скобок и вычисли значения полученных выражений. Попроси больше объяснений. Следить. ... Изменим порядок действий и вычислим новые значения выражений: (45+27): 3 - 12 =12. 90-36:(3*2) =84. 84:(4*3)+2 =9. 100-(10*9-8) =18. (17+15)*3*0 =0.

4,5(37 оценок)
Ответ:
prvvk
prvvk
31.12.2020

Чтобы уравнение имело  действительное решение   ,  достаточно чтобы дискриминант был неотрицательным.

D/4 = (a^3-b^3)^2 -(a^2-b^2)*(a^4-b^4)>=0

То  есть ,  необходимо доказать ,  что  при любых a и b справедливо строгое неравенство :

(a^3-b^3)^2>=(a^2-b^2)*(a^4-b^4)

 (a-b)^2*(a^2+ab+b^2)^2>=(a-b)^2* (a+b)^2 * (a^2+b^2)

Заметим ,  что  когда  a=b  , получаем  что  0=0 , то есть условие выполнено.  И  в этом случае уравнение имеет бесконечно много решений.

Теперь,  поскольку  мы разобрали этот случай и  (a-b)^2>=0 , то для случая  a≠b , можно поделить обе части неравентсва на (a-b)^2  не меняя знак неравенства  :

(a^2+ab+b^2)^2>=(a+b)^2*(a^2+b^2)

( a^2+ab+b^2)^2 >= (a^2+2ab+b^2)*(a^2+b^2)

Теперь сделаем слудующий прием , поскольку  (a^2+b^2)^2>0   при a≠b≠0

То можно поделить на это выражение обе части неравенства не меняя его знак :

(  1+ ab/(a^2+b^2)  )^2>= 1+ 2ab/(a^2+b^2)

Тогда можно сделать замену:

ab/(a^2+b^2)=t

(1+t)^2>=1+2t

t^2+2t+1>=1+2t

t^2>=0 (верно)

Таким образом :

(a^3-b^3)^2>=(a^2-b^2)*(a^4-b^4) , то  есть  D>=0.

Вывод :  уравнение  имеет  действительное решение при  любых действительных  а и b.

Что и требовалось доказать.

4,4(14 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ