Ну тут всё очень просто.
Пусть х см - длина стороны BC, тогда AB (x+3) см,а площадь прямоугольника равна 28 см². Т.к. это прямоугольник, то AB=CD, BC=AD (по свойству).
Составим и решим уравнение.
S=ab (то есть произведения двух его смежных сторон)
Для нашего случая : S=x(x+3)
x(x+3)=28
x²+3x-28=0
По теореме Виета корни здесь будут -7 и 4.
-7 мы сразу можем не принимать, т.к. длина стороны это всегда положительное число.
Если x=4, то стороны BC и AD равны по 4 см.
4+3=7 см - стороны AB и BC.
ответ. 4 см и 7 см.
не контрольная!
1) b^(1/3)/29b^2 =1/ 29*b^(5/3)
2) log₃ (9а) если log₃ а = 0,3
log3 (9a) = log 3 9 + log 3 a = 2+ log 3 a = 2+0.3=2.3
3) ⁵√0,016 · ⁵√-0,02 = (0.016*-0.02)^(1/5) = ( -0.00032)^( 1/5 ) = -0.2
4) вы правильно написали
5) (2x + 14)/(x+4)(x-7) >=0
2(x+7)/(x+4)(x-7) >=0
{ x+7 >=0
{ (x+4)(x-7) >0
x >= -7
x>-4
x>7
[-7;-4) U (7;oo)
6) x-√2x^2-9x+5 = 3
√2x^2-9x+5 = x-3
2x^2-9x+5 = (x-3)^2
2x^2-9x+5=x^2-6x+9
x^2- 3x -4 = 0
D=9 +4* 1 *4 = 5^2
x=3+5/2=4
x2=3-5/2=-1
Подходит только 4