Сначала определим время, за которое мотоциклист планировал проехать свой путь (первоначальная скорость=Х). t=120:X Потом он ехал со скоростью 1,2 Х те же 120 км, плюс остановка в пути 15 минут, это 0,25 часа (15:60=0,25). Можем составить уравнение: 120:Х =120:1,2Х + 0,25 Приводим к общему знаменателю, это 1,2Х , подписываем дополнительные множители, перемножаем и получаем новое уравнение: 144 = 120 + 0,3Х -0,3Х = 120 - 144 -0,3Х = - 24 0,3Х = 24 Х = 24 : 0,3 Х = 80 (км\час, первоначальная скорость мотоциклиста). ПРОВЕРКА: 120:80=1,5 (часа) 120:96+0,25=1,5(часа).
Решите квадратное неравенство;б)-49x^2+14x-1(больше или равно) 0 в)-3x^2 +x-2<0
б)-49x^2+14x-1≥ 0
найдем корни соответствующего кв. уравнения
-49x^2+14x-1= 0 -(7x-1)²=0 x=1/7.
графиком функции y=-49x^2+14x-1 является парабола, ветки которой направлены вниз,вершина - в точке с координатами (1/7;0) ⇒-49x^2+14x-1≥ 0 ⇔ x=1/7
в)-3x^2 +x-2<0
найдем корни соответствующего кв. уравнения
-3x^2+x-2= 0 ⇔ 3x^2-x+2= 0 ⇔ D=1-4·3·2<0, нет корней,
графиком функции y=-3x^2+x-2 является парабола, ветки которой направлены вниз,вершина - в точке ниже оси ох (т.к D=1-4·3·2<0) ⇒ -3x^2 +x-2<0 выполняется при всех х∉R, или x∉(-∞,+∞)
(4y-5x)(16y^2+20xy+25x^2)
Объяснение:
64y^3-125x^3
Представим числа 64 и 125 в виде степени:
4^3y^3-5^3y^3
(4y)^3-(5x)^3 - раскладываем на множители
(4y-5x)((4y)^2+4y * 5x+(5x)^2) - сокращаем выражение
(4y-5x)(16y^2+20xy+25x^2)
Вот и ответ