График этой функции пересечёт линию более одного раза только если будут существовать промежутки разной монотонности (на каких-то функция возрастает, на других - убывает).
Обязательным условием смены монотонности функции является обращение её производной в ноль (или несуществование производной) в точке, где монотонность меняется. Попробуем их найти.
Как видно из вида производной, для всех точек области определения функции, она не обращается в ноль (более того, функция строго возрастает).
Таким образом, наше уравнение не может иметь более одного корня.
Методом пристального взгляда замечаем, что - корень уравнения.
Рассмотрим функцию
на её области определения ![D_{f}=\big(3;+\infty\big)](/tpl/images/1654/4569/1ced6.png)
График этой функции пересечёт линию
более одного раза только если будут существовать промежутки разной монотонности (на каких-то функция возрастает, на других - убывает).
Обязательным условием смены монотонности функции является обращение её производной в ноль (или несуществование производной) в точке, где монотонность меняется. Попробуем их найти.
Как видно из вида производной, для всех точек области определения функции, она не обращается в ноль (более того, функция строго возрастает).
Таким образом, наше уравнение не может иметь более одного корня.
Методом пристального взгляда замечаем, что
- корень уравнения.
Действительно,![f(4)=\sqrt{9}+\sqrt{1}+\log_{2}(4-3)=3+1+0=4](/tpl/images/1654/4569/880e9.png)
ответ.![x=4](/tpl/images/1654/4569/ea878.png)