Если площадь s(x) фигуры x разделить на площадь s(a) фигуры a , которая целиком содержит фигуру x, то получится вероятность того, что точка, случайно выбранная из фигуры x, окажется в фигуре a. обозначим за x и y время прихода, 0≤x,y≤60 (минут), так как время ожидания с 15.00 до 16.00 равно 60 мин. в прямоугольной системе координат этому условию удовлетворяют точки, лежащие внутри квадрата oabc. друзья встретятся, если между моментами их прихода пройдет не более 13 минут, то есть y-x< 13, y< x+13 (y> x) и x-y< 13 , y> x-13 (y< x).этим неравенствам удовлетворяют точки, лежащие в области х.для построения области х надо построить прямые у=х+13 и у=х-13.затем рассмотреть точки, лежащие ниже прямой у=х+6 и выше прямой у=х-13.кроме этого точки должны находиться в квадрате оавс.площадь области х можно найти, вычтя из площади квадрата оавс площадь двух прямоугольных треугольников со сторонами (60-13)=47: s(x)=s(oabc)-2*s(δ)=60²-2*1/2*47*47=3600-2209=1391.
p=6 ; x12=(1+-√13)/2 ; x3=2
Многочлен : P(x)= x³-3x²-x+6
Объяснение:
Подставим известный корень в уравнение :
x³-3x²-x+p =0
x=2
8-12-2+p=0
p=6
x³-3x²-x+6=0
1 -й cпособ
По обобщенной теореме Виета
Сумма корней равна : x1+x2+x3= 3 , а произведение равно x1*x2*x3= -6
Тогда сумма двух других корней равна :
x1+x2=3-2=1
Произведение :
x1*x2= -6/2=-3
Тогда x1,x2 - корни уравнения
x^2-x-3=0
D = 1+ 12=13
x12=( 1+-√13)/2
2 cпособ.
Разделить данный многочлен в столбик на (x-2) или банально вынести этот множитель из многочлена . ( просто вынесу)
x^3-3*x^2 -x+6 = x^3 -2*x^2 -x^2-x+6 = x^2*(x-2) -(x-2)*(x+3) =
=(x-2)*( x^2-x-3) ( совпало , значит мы решили задачу правильно)
ответ : p=6 ; x12=(1+-√13)/2 ; x3=2