Скорость теплохода в стоячей воде равна 32,5 км/ч.
Объяснение:
Дано:
S₁ = 4 км против течения
S₂ = 33 км по течению
v = 6,5 км/ч -- скорость течения
T = 1 ч -- общее время
Найти: V -- скорость теплохода в стоячей воде
(V – v) -- скорость теплохода при движении против течения, поэтому на путь против течения теплоход затратил S₁ / (V – v) времени.
(V + v) -- скорость теплохода при движении по течению, поэтому на путь по течению теплоход затратил S₂ / (V + v) времени.
Общее время T равно сумме времени, которое теплоход шел по течению и против течения:
T = S₁ / (V – v) + S₂ / (V + v)
T(V – v)(V + v) = S₁(V + v) + S₂(V – v)
TV² – Tv² = (S₁ + S₂)V + (S₁ – S₂)v
TV² – (S₁ + S₂)V – Tv² – (S₁ – S₂)v = 0
Подставим числовые значения:
V² – (4 + 33)V – 6,5² – (4 – 33)·6,5 = 0
V² – 37V + 146,25 = 0
D = 37² – 4·146,25 = 784 = 28²
V₁ = (37 – 28)/2 = 9/2 = 4,5 км/ч -- не подходит, т.к. при такой скорости теплоход не смог бы двигаться против течения реки
V₂ = (37 + 28)/2 = 32,5 км/ч
1) x^2 >= 196
x <= -14 U x >= 14
2) x(x+5)(2-6x)(2x-4) <= 0
Разделим неравенство на (-4). При этом знак неравенства поменяется.
x(x+5)(3x-1)(x-2) >= 0
По методу интервалов, особые точки: -5, 0, 1/3, 2.
x ∈ (-oo; -5] U [0; 1/3] U [2; +oo)
3) Это НЕ неравенство
4) x^2*(2+3) > 0
5x^2 > 0
Это неравенство истинно при любом x, кроме 0.
x ∈ (-oo; 0) U (0; +oo)
5) (x+2)/(x-4)^2 >= 0
x ≠ 4
(x - 4)^2 > 0 при любом x, не равном 4, поэтому можно на нее умножить.
x + 2 >= 0
x ∈ [-2; 4) U (4; +oo)
2x^2-x=0
D=(-1)^2-4*2*0=1
x1=(1-(-1))/(2*2)=2/4=0.5
x2=(-1-(-1))/(2*2)=0 - меньший корень уравнения.