Научные методы обучения математике – это методы, направленные на организацию сознательной математической деятельности учащихся, посредством осуществления адекватных мыслительных операций. Научные методы подразделяются на: чувственные: восприятие, наблюдение, опыт теоретические: анализ, сравнение, обобщение, синтез и т.д. формально-логические: дедуктивные, индуктивные и т.д. Учебные методы обучения математике – методы, разработанные специально для обучения детей в средних общеобразовательных школах, направлены на эффективность обучения. Включают в себя такие методы как эвристические, методы программирования, обучение на моделях и т.п.
Объяснение:
Объяснение:
В основе метода математической индукции (ММИ) лежит принцип математической индукции: утверждение $P(n)$ (где $n$ - натуральное число) справедливо при $\forall n \in N$, если:
Утверждение $P(n)$ справедливо при $n=1$.
Для $\forall k \in N$ из справедливости $P(k)$ следует справедливость $P(k+1)$.
Доказательство с метода математической индукции проводится в два этапа:
База индукции (базис индукции). Проверяется истинность утверждения при $n=1$ (или любом другом подходящем значении $n$)
Индуктивный переход (шаг индукции). Считая, что справедливо утверждение $P(k)$ при $n=k$, проверяется истинность утверждения $P(k+1)$ при $n=k+1$.
Метод математической индукции применяется в разных типах задач:
Доказательство делимости и кратности
Доказательство равенств и тождеств
Задачи с последовательностями
Доказательство неравенств
Нахождение суммы и произведения
1) а) F'(x)=3*x^2+8*x-5+0
Так как (x^3)'=3*x^2, (x^2)'=2*x, (x)'=1, (C)'=0, то F'(x)=f(x)
б) F'(x)=3*4*x^3-1/x=12*x^3-1/x
Так как (x^4)'=4*x^3, (ln x)'=1/x, то F'(x)=f(x)
2) a) F(x)=-x^(-2)+sin x, (x^(-2))'=-2*x^(-2-1)=-2*x^-3=-2/x^3, (sin x)'=cos x и f(x)=2/x^3+cos x
След. F'(x)=f(x)
б) F(x)=3*e^x
Так как (3*e^x)'=3*(e^x)'=3*e^x и f(x)=3*e^x, то F'(x)=f(x)
3) F(x)=x^3+2x^2+C,
т. к. (x^3)'=3x^2
(2x^2)'=2*2x=4x
C'=0
1. f(x)=3x^2+4x
След. , F'(x)=f(x)
2. Т. к. график первообразной проходит через A(1;5), то 5=1^3+2*1+C - верное равенство
5=3+С
С=2
ответ: F(x)=x^3+2x^2+2
4) у=x^2
у=9
x^2=9
х1=-3
х2=3
Границы интегрирования: -3 и 3
Чертим на коорд. пл. графики функ. у=x^2 и у=9, опускаем проекции из точек пересеч. графиков на ось х
Полученный прямоугольник обозначаем как ABCD, площадь которого равна 9*(3+3)=54
S (OCD)= ∫ от 0 до 3 x^2 dx = 1/3*3^3-1/3*0=9
Т. к. S (ABO) = S (OCD), то S(иск) =54-2*9=36
В пятом условии для решения не хватает функции, график которой бы "замыкал" указанные параболы на коор. плоскости.