Задание 7.
Значение производной в точке х₀ равно угловому коэффициенту касательной, проведённой к графику функции y=f(x) в точке с абсциссой х₀.
f `(x₀)= k =tga
a - угол наклона касательной к оси абсцисс острый, значит, k>0
По представленному чертежу выбираем удобный прямоугольный треугольник с углом a и ищем tga (отношение противолежащего к углу а катета к прилежащему катету).
В данном случае, удобно выбрать треугольник с катетами 2 и 1.
k= tga = 2/1 = 2
Следовательно, f `(x₀)=2
Задание 8.
f(x)=x³-2x²+x+2
A) f(1)=1³-2*1²+1+2=1-2+3=2
Б) f `(x)=(x³-2x²+x+2)`=3x²-4x+1
f `(1)=3*1²-4*1+1=3-4+1=0
ответ: А) 4
Б) 0
C(0;4)
Объяснение:
чтобы узнать ,принадлежит ли точка графику функции,надо в данную функцию подставить значения х и у.если получим верное равенство-тогда точка принадлежит графику функции,а если равенство будет неверным,значит точка не принадлежит графику.
A(2;3)
Х=3
У=2
Подставим вместо у и х эти цифры
2=3²-5×3+4
Будет -2 т.к. -2 нету в точке А то она не подходит.❌
В(1;4)
4=1²-5×1+4
Пример равен 0, не принадлежит графику.❌
С(0;4)
4=0-5×0+4
Пример равен 4,т.к. пример совпадает с точками С то он относится к графику.✔
D(5;12)
12=4²-5×4+4
Поимер равен 0, не принадлежит графику.❌
Е(-2;16)
16=-2²-5×(-2)+4
Пример равен 10, не принадлежит графику.❌
F(1;-12)
-12=1²-5×1+4
Пример равен 0, не принадлежит графику.❌
Коммент от меня)
Откуда я это знаю? Я это сейчас делала,тоже искала ответ тут но не нашла,покапаясь в тетрадке,нашла как решать,учитель подтвердил эти ответы и поставил 5. Так что это правильно;)