Отдельный случай квадратное неравенство вырождается в линейное
а значит выполняется для всех Пусть теперь
квадратное неравенство, чтоб оно выполнялось нужно чтоб ветви параболы были направлены верх (очевидно если ветви будут вниз то найдется гдето точка ближе к минус бесконечности так точно для которой значение функции задающей л.ч неравенства будет отрицательно, так как в случае ветвей вниз, только ограниченная часть параболы находится выше оси абсцис)
итак имеем первое необходимое условие
дальше два случая первый случай - если корней нет () - отлично, график параболы выше оси Ох - неравенство выполняется
УчитЫвая второе условие авмтоматически и необходимо вЫполнение неравенства или
теперь рассмотрим второй случай - когда есть корни -точки пересечения с осью абсцисс - необходимо чтоб левый(меньшее число) (или единственный --одинаковый) корень лежал правее 0 (или равнялся 0)[/tex] итого
;
- с первых двух неравенств (аналогично по рассуждениям относительно первого случая)
- что очевидно верно при условиях обьединяя все получаем что данное неравенство верно при а є
Отдельный случай квадратное неравенство вырождается в линейное
а значит выполняется для всех Пусть теперь
квадратное неравенство, чтоб оно выполнялось нужно чтоб ветви параболы были направлены верх (очевидно если ветви будут вниз то найдется гдето точка ближе к минус бесконечности так точно для которой значение функции задающей л.ч неравенства будет отрицательно, так как в случае ветвей вниз, только ограниченная часть параболы находится выше оси абсцис)
итак имеем первое необходимое условие
дальше два случая первый случай - если корней нет () - отлично, график параболы выше оси Ох - неравенство выполняется
УчитЫвая второе условие авмтоматически и необходимо вЫполнение неравенства или
теперь рассмотрим второй случай - когда есть корни -точки пересечения с осью абсцисс - необходимо чтоб левый(меньшее число) (или единственный --одинаковый) корень лежал правее 0 (или равнялся 0)[/tex] итого
;
- с первых двух неравенств (аналогично по рассуждениям относительно первого случая)
- что очевидно верно при условиях обьединяя все получаем что данное неравенство верно при а є
Формула суммы n первых членов арифметической прогрессии: Sn = (а1 + аn)*n/2.
a1 = 1, а20 = 20 (Для натуральных чисел - сам элемент соответствует его номеру.
S20 = (a1 + a20)*20/2 = (1 + 20)*20/2 = 21*20/2 = 210.
ответ: 210.