пусть за хч-первая наполнит,а х+6 ч-наполнит вторая труба.
1/х-производительность первой трубы в 1час,а 1/(х+6) -производительность второй.
а 1/4 ч общая производительность за 1час.
Составим уравнение:
1/х+1/(х+6)=1/4 - приводим к общему знаменателю-4*х*(х+6)
4х+4х+24=х²+6х
х²-2х-24=0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-2)²-4*1*(-24)=4+96=√100=10;
Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(10+2)/2=12/2=6;
x₂=(-10+2)/2=-8/2=-4 - этот ответ не подходит,т.к. время не может быть отрицательное.
Значит
первая труба в отдельности может наполнить бассейн за 6ч,а вторая 6+6=за 12часов.
Согласно определению противоположных чисел, два числа будут являться противоположными, если после прибавления одного числа к другому в результате получится ноль.
Для нахождения параметра а воспользуемся теоремой Виета.
Согласно этой теореме сумма корней данного уравнения x^2 + (a - 2)x + a - 6 = 0 равна -(а - 2).
Следовательно, для того, чтобы корни данного уравнения были противоположными числами необходимо, чтобы выполнялось условие:
-(а - 2) = 0,
откуда следует:
а = 2.
Проверим, имеет ли уравнение x^2 + (a - 2)x + a - 6 = 0 корни при а = 2.
Подставляя данное значение параметра а в уравнение, получаем:
x^2 + (2 - 2)x + 2 - 6 = 0;
x^2 - 4 = 0;
(х - 2) * (х + 2) = 0;
х1 = 2;
х2 = -2.
Таким образом, корни данного уравнения являются противоположными числами при а = 2.
ответ: при а = 2.