972 или 871
Объяснение:
пусть
x записано в виде abc, то есть
x=100a+10b+c
(а,b,c -натуральные от 1 до 9 или 0)
тогда по условию
100a+10b+c -( 100c+10b+a)=693
a+b+c=18
из первого получим
99a-99c=693
или
a-c=7
так как a и с могут принимать только целые неотрицательные значения от 0 до 9
то мы получаем следующие пары
а1=9 с1=2
а2=8 с2=1
а3=7 с3=0
теперь вспоминаем про второе условие
а+b+c=18
b=18-a-c
третий вариант не подходит, так как
b3=11
поэтому остаются следующие
а1=9 b1=7 с1=2
а2=8 b1=9 с2=1
откуда наше число
x1=972
или х2=891
3c-4d 3c+4d
( - )
4c-3d 4c+3d
12c^2 +9cd -16 cd -12d^2
(4c-3d ) ( 4c+3d) (по формуле (a+b) (a-b) =a^2 - b^2) 12c^2 -7 cd -12d^2 14 (4c-3d ) ( 4c+3d) : 4c+ 3d 12c^2 -7 cd -12d^2 (умножить на) 4c+3d (4c-3d ) ( 4c+3d) 14 (сокращаем) 12c^2 -7 cd -12d^2 4c^2-2cd 14 (4c-3d ) + 4c-3d (общий знаменатель 14 (4c-3d ). 4c-3d - домножим на 14) 12c^2 -7 cd -12d^2 +56с^2 -28cd =0 68c^2 -35cd -12d^2 =0 (под вечер мозг взорвался и был таков)
Извините за нескромный вопрос, но где ниже приведенные?)
X^2-4x-5