через 180 минут
Объяснение:
Первый раз поравняется примерно в 9-50. На самом деле чуть раньше, но это не важно, потому что это время все равно компенсируется на следующих оборотах.*
Значит первый раз через примерно 50 минут (в 9-50)
второй раз примерно через 65 минут (в 10-55)
третий раз снова через 65 минут (ровно в 12 часов)
Итак 50+65+65=180 минут
Можно и по другому. Стрелки встречаются 1 раз в час. В 9-00 они уже не встретились. Значит три раза они встретятся через три оборота минутной стрелки, то есть ровно в 12-00, через три часа.
3 часа=180 минут
*компенсируется время - подразумевается что первый раз она может поравняться не ровно в 9-50, а допустим в 9-49, потому что часовая стрелка еще не встанет ровно на 10, но тогда следующий круг минутная пройдет не 65 минут, а 66, потому сумма не изменится. А когда дойдет до третьего раза в 12 часов то стрелки совпадут точно.
log₂ sin(x/2) < - 1
ОДЗ: sinx/2 > 0
2πn < x/2 < π + 2πn, n ∈ Z
4πn < x < 2π + 4πn, n ∈ Z
sin(x/2) < 2⁻¹
sin(x/2) < 1/2
- π - arcsin(1/2) + 2πn < x/2 < arcsin(1/2) + 2πn, n ∈ Z
- π - π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/3 + 4πn < x < π/3 + 4πn, n ∈ Z
2) log₁/₂ cos2x > 1
ОДЗ:
cos2x > 0
- arccos0 + 2πn < 2x < arccos0 + 2πn, n ∈ Z
- π/2 + 2πn < 2x < π/2 + 2πn, n ∈ Z
- π + 4πn < x < π + 4πn, n ∈ Z
так как 0 < 1/2 < 1, то
cos2x < 1/2
arccos(1/2) + 2πn < 2x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < 2x < 2π - π/3 + 2πn, n ∈ Z
π/6 + πn < x < 5π/6 + πn, n ∈ Z