1) у + 2 = √(х + 4) у + х³ = 0 анализируем сами формулы: а) у = √(х + 4) - 2 Если бы -2 не было, то наша кривуля (график прощения) начиналась от точки бы через (0;2) и дальше вверх. Теперь эту кривую надо опустить на 2 единицы вниз, параллельно оси у Значит, она начинается от точки (-6;-2) пройдёт через (-2; 0) и дальше вверх. б) у = - х³ Это кубическая парабола, проходит через начало координат через точки ( -1;1) и (1; -1) в) вывод: эти кривые пересекаются в точке. значит, система имеет одно решение. 2) смотри во вложении
||x-2|-3x|=2x+2 Подмодульная функция x-2 преобразуется в нуль в точке x=2. При меньших значениях за 2 она отрицательная и положительная для x>2. На основе этого раскрываем внутренний модуль и рассматриваем равенство на каждом из интервалов. при x∈(-∞;2) x-2<0 и |-x+2-3x|=2x+2⇒|2-4x|=2x+2 Подмодульная функция равна нулю в точке x=1/2. При меньших значениях она знакоположительная, при больших – отрицательная. Раскроем модуль для x<1/2 2-4x=2x+2⇒6x=0⇒x=0∈(-∞;1/2) Следующим шагом раскрываем модуль на интервале (1/2;2) -2+4x=2x+2⇒2x=4⇒x=2∉(1/2;2) Раскроем внутренний модуль для x>2 |x-2-3x|=2x+2⇒|-2-2x|=2x+2 Подмодульная функция положительная при x<-1 и отрицательная при x>-1 раскрываем модуль на интервале (2;∞) 2+2x=2x+2⇒x∈(2;∞) итак, х∈{0;(2;∞)} .
значение функции, если значение аргумента равно 0
y(0)=4*0-2=2
значение функции, если значение аргумента равно -2
y(-2)=4*(-2)-2=-10
значение функции, если значение аргумента равно 2.5
y(2.5)=4*2.5-2=8
значение аргумента, при котором значение функции равно 0
4x-2=0
4x=2
x=0.5
значение аргумента, при котором значение функции равно 2
4x-2=2
4x=4
x=1
значение аргумента, при котором значение функции равно -7
4x-2=-7
4x=-5
x=-5/4
Объяснение: