Пусть 1р может выполнить всю работу за х дней, а 2р - за у дней, тогда производительность 1р - 1/х, 2р - 1/у (принемаем всю работу за "1"). Т.к. вместе они выполнили всю работу за 5 дней, то можно составить первое уравнение: 5/х+5/у=1 Если 1р будет работать вдвое медленнее, то его производительность будет равна 1/2х, а всю работу два раб. выполнят за 6 дней, составляем второе уравнение: 6/2х+6/у=1
Теперь решаем систему, по условию надо найти только х, поэтому из первого уравнения выразим у: у=5х/(х-5) и подставим во второе: 3/х+6(x-5)/5х-1=0, 15+6(x-5)-5х=0, х=15
А)y`=dy/dx (1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными ydy=eˣdx/(1+eˣ) ∫ydy=∫eˣdx/(1+eˣ) y²/2=ln|eˣ+1| + c - общее решение Можно вместо с взять lnC и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить. y²/2=lnС(eˣ+1) - общее решение при у=1 х=0 1/2=ln2C 2C=√e C=(√e)/2
y²/2=ln((eˣ+1)· (√e)/2) - частное решение можно умножить на 2 y²=2ln((eˣ+1)· (√e)/2) или y²=ln((eˣ+1)²·e/4) - частное решение
b) y`=dy/dx tgxdy=y㏑ydx - уравнение с разделяющимися переменными dy/ylny=dx/tgx; ∫dy/ylny=∫dx/tgx; ∫d(lny)/lny=∫d(sinx)/sinx; ln|lny)=ln|sinx|+lnC; ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
При y=e x=π/4 ln|lne|=ln|Csin(π/4)| ln|1|=ln|C√2/2| 1=C√2/2 C=√2 ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.
Т.к. вместе они выполнили всю работу за 5 дней, то можно составить первое уравнение:
5/х+5/у=1
Если 1р будет работать вдвое медленнее, то его производительность будет равна 1/2х, а всю работу два раб. выполнят за 6 дней, составляем второе уравнение:
6/2х+6/у=1
Теперь решаем систему, по условию надо найти только х, поэтому из первого уравнения выразим у:
у=5х/(х-5)
и подставим во второе:
3/х+6(x-5)/5х-1=0,
15+6(x-5)-5х=0,
х=15
ответ: 15 дней