Как решаются такие уравнения.
Правило звучит таким образом.
В первую очередь нужно перенести в одну сторону от знака равенства все слагаемые, содержащие переменную, а все числовые слагаемые перенести в другую сторону от знака равенства.
Например, во втором 2) примере:
переносим 2х влево, а 4 вправо. При переносе через знак равно меняется знак слагаемого на противоположный.
То есть получаем:
9х + 2х = 48 - 4.
Вычисляем правую и левую части:
11х=44.
После этого находим х, делим правую и левую части уравнения на множитель при х, то есть на 11.
11х / 11 = 44 / 11
х = 4. Это ответ.
в 5) делаем аналогично:
переносим слагаемые с х в одну сторону, числа в другую:
в данном случае перенесем 1.3х вправо, чтобы знак у слагаемого с х был плюс:
6.8 + 2.7 = 0.6х + 1.3х
9.5 = 1.9х
Чтобы дальше решалось проще, умножим правую и левую части на 10 (удобно так избавляться от дробей)
9.5*10=1.9х*10
95 = 19х
Теперь делим правую и левую части на 19:
95/ 19 = 19х / 9
5 = х
х = 5
Развернуть уравнение можно в любой момент в процессе решения.
ответ: х = 5.
6) решается аналогично:
переносим слагаемые с переменным влево, числовые слагаемые вправо:
4/9 * х - 1/6 * х = 9 - 14 = -5, сразу вычисляем правую часть
Для упрощения вычисления умножим правую и левую часть уравнения на 18 - наименьшее число такое, умножение на которое позволит избавиться от дробей в левой части:
4/9 * х * 18 - 1/6 * х * 18 = -5 * 18
4*18/9 * х - 1*18/6 * х = -80
18 делим на 9, получаем 2; 18 делим на 6, получаем 3.
4*2*х - 1*3*х = -80
8х - 3х = -80
5х = -80
Делим правую и левую части на 5:
5х/5 = -80/5
х = -18
ответ: х = -18
Такие распределения, как биномиальное, показательное, нормальное, являются семействами распределений, зависящими от одного или нескольких параметров. Например, показательное распределение с плотностью вероятностей , зависит от одного параметра λ, нормальное распределение- от двух параметровmи σ. Из условий исследуемой задачи, как правило, ясно, о каком семействе распределений идёт речь. Однако остаются неизвестными конкретные значения параметров этого распределения, входящие в выражения интересующих нас характеристик распределения. Поэтому необходимо знать хотя бы приближённое значение этих величин.
Пусть закон распределения генеральной совокупности определён с точностью до значений входящих в его распределение параметров , часть из которых может быть известна. Одной из задач математической статистики является нахождение оценок неизвестных параметров по выборке наблюденийиз генеральной совокупности. Оценка неизвестных параметров заключается в построении функцииот случайной выборки, такой, что значение этой функции приближённо равно оцениваемому неизвестному параметруθ. θ.
Статистическойоценкой(в дальнейшем простооценкой) параметраθтеоретического распределения называется его приближённое значение, зависящего от данных выбора.
Оценка является случайной величиной, т.к. является функцией независимых случайных величин ; если произвести другую выборку, то функция примет, вообще говоря, другое значение.
Существует два вида оценок – точечные и интервальные.
Точечнойназывается оценка, определяемая одним числом. При малом числе наблюдений эти оценки могут приводить к грубым ошибкам. Чтобы избежать их, используют интервальные оценки.
Интервальнойназывается оценка, которая определяется двумя числами – концами интервала, в котором с заданной вероятностью заключена оцениваемая величинаθ.
(4x+2y)+(6+3y-2x)=4x+2y+6+3y-2x=2x+5y+6
как-то так