Для решения этой задачи, нам нужно найти знаменатель q и сумму S геометрической прогрессии (bn), при условии что b1=14 и b2=13.
Для начала, давайте вспомним формулу для n-ного члена геометрической прогрессии:
bn = b1 * q^(n-1)
Мы знаем, что b1=14 и b2=13. Подставим эти значения в формулу:
14 * q^(2-1) = 13
Теперь, давайте выразим q из этого уравнения. Разделим обе части на 14:
q = 13 / 14
Теперь, найдем сумму S геометрической прогрессии. Для этого мы можем использовать следующую формулу:
S = b1 * (1 - q^n) / (1 - q)
Мы знаем, что b1=14, но не знаем значение n. Однако, нам дано значение b2=13. Используя формулу для n-ного члена геометрической прогрессии, мы можем найти q^n:
13 = 14 * q^(2-1)
13 = 14 * q^1
q = 13 / 14
Теперь, подставим все известные значения в формулу для S:
S = 14 * (1 - (13/14)^n) / (1 - 13/14)
Это основное решение задачи. Однако, чтобы найти конкретные значения для q и S, нам нужно знать значение n (которое не дано в условии задачи).
Получается, что знаменатель q равен 13/14, а сумма S зависит от значения n.
Объяснение:
1.
C⁵ₓ₊₁=(3/8)*A³ₓ
(x+1)!/((x+1-5)!*5!)=(3/8)*x!/(x-3)!
(x+1)!/((x-4)!*5!)=(3/8)*x!/((x-4)!(x-3))
x!*(x+1)/5!=(3/8)*x!/(x-3)
(x+1)/5!=(3/8)/(x-3)
(x-3)*(x+1)=(3/8)*120
x²-2x-3=45
x₂-2x-48=0 D=196 √D=14
x₁=-6 ∉ x₂=8.
ответ: х=8.
2.
Cˣ⁻⁴ₓ₊₁=(7/15)*A³ₓ₊₁
(x+1)!/((x+1-(x-4))!*(x-4)!=(7/15)*(x+1)!/(x+1-3)!
(x+1)!/(5!*(x-4)!=(7/15)*(x+1)!/(x-2)!
1/(5!*(x-4)!)=(7/15)/((x-4)!*(x-3)*(x-2))
1/5!=(7/15)/((x-3)*(x-2))
15*(x-3)*(x-2)=7*5!
15*(x²-5x+6)=7*120 |÷15
x²-5x+6=7*8
x²-5x+6=56
x²-5x-50=0 D=225 √D=15
x₁=-5 ∉ x₂=10.
ответ: х=10.