М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
влада415
влада415
29.04.2023 12:56 •  Алгебра

Знайти інтеграл 1) s xdx/1+x^4= 2) s 5cosx/sin^4xdx= 3) s x^3dx/x^4+5=

👇
Ответ:
zhenyaevgesha00
zhenyaevgesha00
29.04.2023

 

1) замена x^=t  S dt/t^2+1=arctgt, обратная замена arctgx^2
2)sinx=t cosxdx=dt S t^(-4)dt=-t^(-3)/3
обратная замена
-5(sin^(-3)x)/3
3)ln(x^4+5)/4.

4,7(80 оценок)
Открыть все ответы
Ответ:
mivaniuk
mivaniuk
29.04.2023
a)
log_{0.5} ( x^{2} -3x)=-2

ОДЗ:
x^2-3x\ \textgreater \ 0

x(x-3)\ \textgreater \ 0
 
    +              -                +
---------(0)----------(3)-------------
///////////                  ////////////////

x ∈ (- ∞ ;0) ∪ (3;+ ∞ )

log_{0.5} ( x^{2} -3x)= log_{0.5} 0.5^{-2}

log_{0.5} ( x^{2} -3x)= log_{0.5} 4

x^{2} -3x= 4

x^{2} -3x-4=0

D=(-3)^2-4*1*(-4)=9+16=25=5^2

x_1= \frac{3+5}{2}=4

x_2= \frac{3-5}{2}=-1

ответ: -1; 4

b)
log^2_{2} (x-2)- log_{2} (x-2)=2

ОДЗ:

x-2\ \textgreater \ 0

x\ \textgreater \ 2

log^2_{2} (x-2)- log_{2} (x-2)-2=0

Замена:  log_{2} (x-2)=t

t^2-t-2=0

D=(-1)^2-4*1*(2)=1+8=9

t_1= \frac{1+3}{2}=2

t_2= \frac{1-3}{2}=-1

log_{2} (x-2)=2   или   log_{2} (x-2)=-1

x-2=4       или       x-2=0.5

x=6         или        x=2.5

ответ:  2,5;  6
 
c)
log_{3} ( x^{2} +2x)\ \textless \ 1

ОДЗ:
x^{2} +2x\ \textgreater \ 0

x(x+2)\ \textgreater \ 0
 
    +              -                +
---------(-2)----------(0)-------------
///////////                  ////////////////

x ∈ (- ∞ ;-2) ∪ (0;+ ∞ )

log_{3} ( x^{2} +2x)\ \textless \ log_{3}3

x^{2} +2x\ \textless \ 3

x^{2} +2x-3\ \textless \ 0

D=2^2-4*1*(-3)=4+12=16

x_1= \frac{-2+4}{2}=1

x_2= \frac{-2-4}{2}=-3

     +                -                  +
----------(-3)-----------(1)--------------
               /////////////////

С учётом ОДЗ получаем

ответ: (-3;-2) ∪ (0;1)

d)
log_{ \frac{1}{3} } (0.1x-5.2)\ \textgreater \ 2

ОДЗ:
0.1x-5.2\ \textgreater \ 0

0.1x\ \textgreater \ 5.2

x\ \textgreater \ 52

log_{ \frac{1}{3} } (0.1x-5.2)\ \textgreater \ log_{ \frac{1}{3} } \frac{1}9}

0.1x-5.2\ \textless \ \frac{1}9}

0.1x\ \textless \ \frac{1}9} +5 \frac{1}{5}

0.1x\ \textless \ \frac{5}{45} +5 \frac{9}{45}

0.1x\ \textless \ 5 \frac{14}{45}

\frac{1}{10} x\ \textless \ \frac{239}{45}

x\ \textless \ \frac{239}{45} *10

x\ \textless \ 53 \frac{1}{9}

С учётом ОДЗ получаем

ответ: (52;53 \frac{1}{9})
4,6(50 оценок)
Ответ:
varvaralikhtsr
varvaralikhtsr
29.04.2023
1) 4sin²x-2sinxcosx-3·1=0
4sin²x-2sinxcosx-3(sin²x+cos²x)=0
4sin²x-2sinxcosx-3sin²x-3cos²x=0
sin²x-2sinxcosx-3cos²x=0  |÷cos²x
tg²x-2tgx-3=0
tgx=t
t²-2t-3=0
t₁+t₂=2  t₁t₂=-3
t₁=-1  tgx=-1  x=arctg(-1)+πn  x=-arctg1+πn  x=-π/4+πn, n∈Z
t₂=3  tgx=3    x=arctg3+πk,  k∈Z
2)3(cos²x-sin²x)+sin²x+5sinxcosx=0
3cos²x-3sin²x+sin²x+5sinxcosx=0
3cos²x-2sin²x+5sinxcosx=0  |÷cos²x
3-2tg²x+5tgx=0
tgx=t
3-2t²+5t=0
2t²-5t-3=0
D=25-4·2·(-3)=49
t₁=(5-7)/4=-1/2  tgx=-1/2  x=arctg(-1/2)+πn  x=-arctg1/2+πn  n∈Z
t₂=(5+7)/4=3    tgx=3        x=arctg3+πk  k∈Z
4,8(78 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ