При решении таких уравнений надо "снимать знаки модуля" и при этом получать новые, более простые уравнения. каждое подмодульное выражение = 0 при х = 0; 7; 2. Учтём, что |x| ,= x при х ≥ 0 |x| = -x при х < 0 Наша числовая прямая делится нашими числами на 4 промежутка. Получим 4 уравнения. 1) (-∞ ; 0) (*) -х +7 - х -2(х-2) = 4 -х +7 -2х +4 = 4 -3х = -7 х = 7/3 ( не входит в (*)) 2) (0;2) ( **) х -7 +х -2(х-2) = 4 х -7 +х -2х +4 = 4 -х = 7 х = -7 ( не входит в (**)) 3) (2;7) (***) х +7 - х +2(х -2) = 4 х +7 - х +2х -4 = 4 2х = 15 х = 15/2 х = 7,5 ( не входит в (***)) 4) (7;+∞) ( ) х -7 +х + 2(х -2) = 4 х -7 +х +2х -4 = 4 4х = 15 х = 15/4 = 3,75 ( не входит в ()) ответ: нет решений.
1)Найдите девятый член последовательности
2) Найдите пятый член последовательности заданной рекуррентным у1 = ½, yₙ=2*y₍ₙ₋₁₎
y₂=2*1/2=1; y₃=2*1=2; y₄=2*2=4; y₅=2*4=8
3) Подберите формулу n- го члена последовательности - 2/2; 4/5; - 6/8; 8/11; -10/14;
проверка:
4) Сколько членов последовательности 3, 6, 9, 12,….меньше числа 95
аₙ=а₁+3(n-1)
aₙ<95
a₁+3(n-1)<95
3+3n-3<95
3n<95
n<31.(6)
n=31
проверим: a₃₁=3+3(31-1)=3+3*30=93
Значит 31 член меньше 95
5) у₁ = 2, у₂ = 1, уₙ = 2y₍ₙ₋₂₎+3y₍ₙ₋₁₎ (n = 3,4,5,…).Найдите n, если известно, что уₙ = 83.
тут можно просто решить находя слены этой последовательности
y₁=2
y₂=1
y₃=2*2+3*1=4+3=7
y₄=2*1+3*7=2+21=23
y₅=2*7+3*23=14+69=83
N=5