М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DDaVV
DDaVV
11.01.2021 11:33 •  Алгебра

Сократить дробь: 35x^5y^7z^2 / 21x^3y^8z^2

👇
Ответ:
Катя565111
Катя565111
11.01.2021

\frac {35x^5y^7z^2}{21x^3y^8z^2}=\frac {5x^2}{3y}

4,6(61 оценок)
Открыть все ответы
Ответ:
Cherry5858
Cherry5858
11.01.2021
1) Раскрываем скобки. Перемножаем каждое число на каждое.
а) (x - 3)(x - 7) - 2x(3x - 5) = x*x - 3*x - 7*x - 3(-7) - 2x*3x - 2x(-5) =
= x^2 - 10x + 21 - 6x^2 + 10x = -5x^2 + 21
б) 4a(a - 2) - (a - 4)^2 = 4a^2 - 8a - (a^2 - 8a + 16) =
= 4a^2 - 8a - a^2 + 8a - 16 = 3a^2 - 16
в) 2(m+1)^2 - 4m = 2(m^2+2m+1) - 4m = 2m^2 + 4m + 2 - 4m = 2m^2 + 2

2) а) Выносим х за скобки и раскладываем разность квадратов
x^3 - 9x = x(x^2 - 9) = x(x - 3)(x + 3)
б) Выносим -5 за скобки и получаем квадрат суммы
-5a^2 - 10ab - 5b^2 = -5(a^2 + 2ab + b^2) = -5(a + b)^2

3) Раскрываем скобки
(y^2 - 2y)^2 - y^2(y + 3)(y - 3) + 2y(2y^2 + 5) =
= y^4 - 4y^3 + 4y^2 - y^2(y^2 - 9) + 4y^3 + 10y =
= y^4 - 4y^3 + 4y^2 - y^4 + 9y^2 + 4y^3 + 10y = 13y^2 + 10y

4) а) Разность квадратов два раза
16x^4 - 81 = (4x^2 - 9)(4x^2 + 9) = (2x - 3)(2x + 3)(4x^2 + 9)
б) Разность квадратов
x^2 - x - y^2 - y = (x^2 - y^2) - (x + y) = (x-y)(x+y) - (x+y) = (x+y)(x-y-1)

5) x^2 - 4x + 9 = x^2 - 4x + 4 + 5 = (x - 2)^2 + 5
При любом х значение квадрата >= 0, а выражения >= 5
4,7(23 оценок)
Ответ:
Victor111111111
Victor111111111
11.01.2021
1)  скорее всего в задании опечатка:
sin52'cos22'-cos52'sin22'=sin(52-22)=sin30=0.5

2)Преобразуйте sin4a-sin2a в произведение,
по формуле разности синусов:
2cos\frac{4 \alpha +2 \alpha }{2}sin\frac{4 \alpha -2 \alpha }{2}=2cos3α*sinα

3)Установите соответствие между тригонометрическими функциями (А-В) и их числовыми значениями(1-4), если sina=3/5 и п/2п
A.cosa 1) (-1)*1/3
Б.ctga 2)(-24/25)
В.sin2a 3)(-4/5)
4) 4/5

решение:
 п/2<α<п - угол принадлежит 2 четверти⇒ cos x отрицательный
cosx= -√(1-sin²x)= -√1-9/25= -√16/25= -4/5
ctgx=\frac{cosx}{sinx}= - \frac{4*5}{5*3}=-4/3
sin2x=2sinx cosx= - 2\frac{3}{5} \frac{4}{5}=-24/25

4)Вычислите cos210' и cos15'
cos210=cos(180+30)=-cos30= - \sqrt{3} /2
cos15=cos(45-30)=cos45*cos30+sin45*sin30=\frac{ \sqrt{2} }{2}* \frac{ \sqrt{3} }{2}+ \frac{ \sqrt{2} }{2}* \frac{1}{2}= \frac{ \sqrt{6}+ \sqrt{2} }{2}
4,5(12 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ