38.5. Исследуйте на непрерывность функцію f(x). Постройте график ftr): 1 npil x mo. 1) f(x) - -х при r m0. . 1 - х Tp r > 0: 2) fir) - при > 0: е при x m2, 3) fix) - 1-х при х> 2.
Одинаковая пропускная означает, что в единицу времени проходит тот же же поток воды. Иными словами совокупная площадь сечений двух исходных труб должна быть равна площади сечения новой трубы. Трубы обычно делают круглыми, значит для расчетов площади сечения мы можем воспользоваться формулами нахождения площади круга. 2*С1 = С2, где С1 - площадь сечения одной из старых труб (они одинаковы, т.к. диаметр одинаков), С2 - площадь сечения новой трубы. С1 = Пи*Д1^2 / 4, С2 = Пи*Д2^2 / 4, где Д1 - диаметр одной из старых труб, Д2 - диаметр новой трубы. 2* Пи*Д1^2 / 4 = Пи*Д2^2 / 4. 2*Д1^2 = Д2^2, Д2 = (2*Д1^2)^1/2. Д2 = 2^1/2 * Д1. (Диаметр новой трубы равен диаметру старой трубы, умноженному на квадратный корень из двух). Значит, при условии, что Д1 = 50, Д2 = 2^1/2 * 50 = [приближенно равно] = 1,414*50 = 70,7.
Графически - самостоятельно Проверим аналитически: уравнение прямой у=kх+b, где (х; у) - точки, через которые она проходит. составим ур-ие прямой, проходящей через точки А и В Система: {-6=2k+b {-6=2k+3-5k <=> {-9=-3k <=> {k=3 {3=5k+b <=> {b=3-5k {b=3-5k {b=-12
Уравнение прямой у=3х-12 Проверим принадлежит ли ей точка С, 1=3*1-12, 1=3-12 1=-9 неверно точка С не принадлежит прямой у=3х-12, а значит, Данные три точки не лежат на одной прямой
Иными словами совокупная площадь сечений двух исходных труб должна быть равна площади сечения новой трубы.
Трубы обычно делают круглыми, значит для расчетов площади сечения мы можем воспользоваться формулами нахождения площади круга.
2*С1 = С2, где С1 - площадь сечения одной из старых труб (они одинаковы, т.к. диаметр одинаков), С2 - площадь сечения новой трубы.
С1 = Пи*Д1^2 / 4,
С2 = Пи*Д2^2 / 4, где Д1 - диаметр одной из старых труб, Д2 - диаметр новой трубы.
2* Пи*Д1^2 / 4 = Пи*Д2^2 / 4.
2*Д1^2 = Д2^2,
Д2 = (2*Д1^2)^1/2.
Д2 = 2^1/2 * Д1.
(Диаметр новой трубы равен диаметру старой трубы, умноженному на квадратный корень из двух).
Значит, при условии, что Д1 = 50,
Д2 = 2^1/2 * 50 = [приближенно равно] = 1,414*50 = 70,7.