Объяснение:
1.
а) так как коэффициент при x² равен 1, т.е. положителен, то ветви параболы направлены вверх.
б) выделяем полный квадрат: y=(x-7/2)²-25/4. Отсюда следует, что абсцисса вершина параболы x=7/2, а ордината y=-25/4. Поэтому вершина параболы имеет координаты (7/2; -25/4).
с) ось симметрии параболы - это прямая, проходящая через её вершину параллельно оси ОУ. Поэтому в данном случае ось симметрии имеет уравнение x=7/2.
d) решая уравнение x²-7*x+6=(x-7/2)²-25/4, находим x1=6, x2=1. Поэтому функция обращается в 0 в точках (1;0) и (6;0).
e) пусть x=0, тогда y=6, пусть x=7, тогда y=6. Таким образом, найдены две дополнительные точки: (0;6) и (7;6)
2.
а) f(3)=-3²+2*3+15=12, f(-5)=-(-5)²+2*(-5)+15=-20.
б) пусть x=k. Подставляя это значение в выражение для функции, приходим к уравнению 7=-k²+2*k+15, или k²-2*k-8=0. Оно имеет решения k1=4, k2=-2. Таким образом, график проходит через точки (-2;7) и (4;7).
3.
выделяя полный квадрат, запишем уравнение для v(t) в виде v(t)=9-(h-1)²
1) приравнивая v(t) к нулю, приходим к уравнению 9-(h-1)²=0. Решая его и учитывая, что h>0, находим максимальную глубину h=4 м.
2) из уравнения v(t)=9-(h-1)² следует, что наибольшее значение, равное 9 м/с, v(t) достигает при h=1 м.
По теореме синусов:
a : sin 45° = c : sin 30°
a = c · √2/2 : (1/2) = c√2
b : sin 105° = c : sin 30°
Найдем sin 105° :
sin 105° = sin (90° + 15°) = cos 15°
cos 15 = cos( \frac{30}{2} ) = \sqrt{ \frac{cos 30 + 1}{2} } = \sqrt{ \frac{ \sqrt{3}+2 }{4} } = \frac{1}{2} \sqrt{ \frac{4+2 \sqrt{3} }{ 2 } }
cos15= \frac{1}{2} \sqrt{ \frac{ ( \sqrt{3}+1 )^{2} }{2} } = \frac{ \sqrt{3}+1 }{2 \sqrt{2} }
b = c · sin105° : sin 30° = 2c · 1/2 · (√3 + 1)/√2 = c · (√3 + 1)/√2
m² = (b² + c²)/2 - a²/4
m² = (c · (√3 + 1)/√2)²/2 + c²/2 - 2c²/4 = c²(√3 + 1)²/4
m = c · (√3 + 1)/2 = b/√2
По теореме синусов из ΔАМС:
m : sin 30° = b : sinα
sinα = 1/2 · b / m = b/(2m) = b / (2 · b/√2) = √2/2
Так как α тупой угол, α = 135°