Имеем бесконечно убывающую геометрическую прогрессию, |q| < 1
b2 = b1*q
b1 = b2/q
Нам нужно найти знаменатель бесконечно убывающей прогрессии, у которой второй член в 8 раз больше сумма всех ее последующих членов. То есть нам нужно знать две суммы: всей геометрической прогрессии и её части - от третьего члена до бесконечности.
S1 = b1/1-q - сумма всей геометрической прогрессии
S2 = b3/1-q - сумма членов геометрической прогрессии, начиная с третьего.
b2 = 8*S2 - второй член в 8 раз больше суммы всех членов, начиная с третьего.
Немного поработаем с формулами:
b2 = 8*S2
b1*q = 8 * b1*q^2/1-q
b1*q(1-q) = 8*b1*q^2
q - q^2 = 8*q^2
q - 9q^2 = 0
q(1-9q) = 0
q = 0 и 1-9q = 0
q = 1/9
q не может быть равно нулю(это одно из условий в геометрической прогрессии). Поэтому ответ один - 1/9.
=)
ответ: 21 см
Объяснение:
Дано: ΔАВС, КН║АС, Sakh : Sakhc = 1 : 8
Pakh = 7 см
Найти: Pabc.
Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Sakh : Sakhc = 1 : 8, значит площадь треугольника АВС составляет 9 частей, тогда
Sakh : Sabc = 1 : 9 = k²
k = 1/3
Отношение периметром подобных треугольников равно коэффициенту подобия:
Pakh : Pabc = 1 : 3
Pabc = Pakh · 3 = 7 · 3 = 21 см