М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nargis84002
nargis84002
23.12.2020 22:28 •  Алгебра

На примере многочлена 2ху-6х2 объясните, как выполняется разложение на множители вынесением общего множителя за скобки.

👇
Ответ:
melitatomashko
melitatomashko
23.12.2020

поскольку многочлен состоит из одночленов, то суть метода состоит в том, чтобы найти в каждом одночлене в составе многочлена, такой множитель, чтобы он присутствовал в каждом одночлене(берём по возможности низшую степень множителя). Сейчас объясню на практике, а то на словах трудновато:

в данном многочлене надо в каждом одночлене найти общий делитель, на который одновременно делятся и первый и второй одночлен. Исследуем этот многочлен.

Проверю сначала числовые множители, входящие в каждый одночлен. Замечаю, что 2 является частью общего множителя. поскольку 2 делится на 2, а 6 также делится на 2.Значит, записываю начало разложения: 2

Далее, проверю переменную x. Она есть в каждом одночлене, только во втором одночлене она в квадрате. Следовательно, надо записать в разложение также x(она содержится в обоих одночленах), но выбрать в разложение низшую степень x, то есть в разложение мы запишем x, а не x². Это будет вторая часть общего множителя. Он имеет теперь вид 2x. Проверим, есть ли ещё часть общего мнодителя.  Я вижу, что переменная y содержится только в одном одночлене, а в другом его нет. Значит, он не является частью общего множителя. больше ничего в одночленах нет. Значит, общий множитель здесь будет 2x.

Теперь разделим каждый член многочлена на 2x. В первом одночлене 2 делим на 2, остаётся 1, x делим на x, остаётся 1. остался нетронутым только y. Поэтому первый одночлен будет иметь вид y. Во втором одночлене поделим 6 на 2, будет 3. x² делим на x(мы делим соответственно число на число, букву на букву), получаем x. Теперь преобразованный вариант пишем в скобках. итог:

2x(y-3x). То есть суть метода заключается в том, что мы по приведённым правилам, ищем общий для всего многочлена делитель, а затем почленно делим его на этот множитель.Выявленный общий множитель выносим за скобки, а поделённый многочлен - в скобках. Мы разложили данный многочлекн на множители )

4,5(65 оценок)
Открыть все ответы
Ответ:
pointbreakk9
pointbreakk9
23.12.2020

Решаем методом замены.

Пусть x² + 4x = a, тогда получаем уравнение

 

a(a - 17) = -60

a² - 17a = -60

a² - 17a + 60 = 0

По теореме Виета находим корни:

a1 = 5; a2 = 12

Возвращаемся к старым переменным, учитывая, что a = x² + 4x:

 

x² + 4x = 5                                      или                               x² + 4x = 12

x² + 4x - 5 = 0                                                                      x1 = -6;x2 = 2

x1 = -5;x2 = 1

 

Таким образом, данное уравнение имеет 4 корня:

-6; -5; 1; 2

4,8(54 оценок)
Ответ:
ЮлияК111111
ЮлияК111111
23.12.2020

Сделаем замену сначала: 7x=t, т.е  x=\frac{t}{7}

Поскольку x->0, то и 7x->0, значит и t->0.

Подставляем в наш предел то что получилось с учетом замены:

 

 

 \lim_{t \to 0} \frac{1-cos(t^2)}{\frac{t^2}{7^2}}= \\=\lim_{t \to 0} \frac{49(1-cos(t^2))}{t^2}

Поскольку нас неопределенность 0/0 можно использовать правило Лопиталя.

Получаем:

\lim_{t \to 0} \frac{49(2t\cdot sin(t^2))}{2t}=\\ =\lim_{t \to 0} 49(sin(t^2))=0

 

 

 

 

 Возможно я не так понял задание и там имелось в виду:

 

  \lim_{x \to 0} \frac{1-cos^2(7x)}{x^2}

 

 Тогда используем ту же самую замену.:

 

  \lim_{t \to 0} \frac{49(1-cos^2(t))}{t^2}= \\= \lim_{t \to 0} \frac{49(sin^2(t))}{t^2}= \\=\lim_{t \to 0} 49\cdot \frac{(sin(t))}{t}\cdot \frac{(sin(t))}{t}

 

 

 

Видим что здесь произведение двух "первых замечательных пределов", а именно:

 

 

 

 

 

\lim_{t \to \0} \frac{sin(t)}{t}=1

 

 

Используем этот факт и получим: \lim_{t \to 0} 49\cdot \frac{(sin(t))}{t}\cdot \frac{(sin(t))}{t}=49 

 

Как-то так. Но обязательно проверь.

 

 

 

 

4,6(70 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ