М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lemyana2017
lemyana2017
27.05.2022 19:24 •  Алгебра

При всех значениях параметра a решите уравнение 4x^2−4ax+a^2−36=0
Буду признательна за

👇
Ответ:
Sheva031
Sheva031
27.05.2022
Для решения данного квадратного уравнения, мы будем использовать метод дискриминанта. Он поможет нам определить, какие значения параметра a приведут к различным типам решений.

1. Начнем с записи уравнения: 4x^2 - 4ax + a^2 - 36 = 0.

2. Сначала вычислим дискриминант (D) по формуле: D = b^2 - 4ac. В данном случае, коэффициент b = -4a, a = 4, а c = a^2 - 36. Подставив значения, получим: D = (-4a)^2 - 4 * 4 * (a^2 - 36).

3. Раскроем выражение и упростим его: D = 16a^2 - 16(a^2 - 36). Распределитель: D = 16a^2 - 16a^2 + 576. После сокращения получим D = 576.

4. Теперь, исходя из значения дискриминанта, необходимо рассмотреть различные случаи.

a) Если D > 0, то уравнение имеет два различных корня.
b) Если D = 0, то уравнение имеет один корень (является квадратным).
c) Если D < 0, то уравнение не имеет корней.

5. Рассмотрим каждый случай отдельно:

a) D > 0: Поскольку значение дискриминанта равно 576, оно всегда положительное. Это означает, что уравнение всегда будет иметь два различных корня. Ответом будет два значения x, которые можно найти с помощью формулы: x1,2 = (-b ± √D) / (2a). Подставим значения, получим итоговый ответ: x1 = (4a + 24) / 8 и x2 = (4a - 24) / 8.

b) D = 0: Поскольку значение дискриминанта равно 0, это значит, что уравнение имеет один корень (является квадратным). Теперь мы должны решить уравнение при D = 0. После раскрытия квадрата и упрощения, получим: (2x - 2a)^2 = 0. Далее, извлекаем корень и решаем полученное одночленное уравнение: 2x - 2a = 0. Решив его, получим: x = a.

c) D < 0: Поскольку значение дискриминанта всегда равно 576, уравнение не имеет корней.

Таким образом, ответ на поставленный вопрос будет таким:
- При всех значениях параметра a, уравнение 4x^2 - 4ax + a^2 - 36 = 0 будет иметь два различных корня, если a ≠ 0.
- При значении параметра a = 0, уравнение будет иметь одно решение x = 0.
- Уравнение не имеет корней, если a > 0 или a < 0.
4,6(49 оценок)
Проверить ответ в нейросети
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ