М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sergey1234567890f
sergey1234567890f
09.06.2020 17:17 •  Алгебра

При восстановлении после травмы спортсмен Алексей пробегал каждый день на одно и то же число метров больше, чем в предыдущий день. На 4-й день он пробежал 1850 метров, а на 7-й 3200 метров. Сколько всего метров пробежал Алексей на 7 дней?

👇
Ответ:
vda200311
vda200311
09.06.2020

9800 метров.

Объяснение:

Смотреть в прикреплённом файле.


При восстановлении после травмы спортсмен Алексей пробегал каждый день на одно и то же число метров
4,4(15 оценок)
Открыть все ответы
Ответ:
Artem4577
Artem4577
09.06.2020
1. 
А) (2+x)² = 4+4х+х²
Б) (4x-1)² = 16х² - 8х + 1
B) (2x+3y)²  = 4х² + 12ху + 9у²
Г) (х²-5)² = х⁴ - 10х² + 25
2. 
А) y²+10y+25 = (у+5)²
Б) 16x²-8xy+y² = (4х-у)²
3.
А) (5x+2)² - 20x = 25х² + 20х + 4 - 20х = 25х² + 4
Б) 27x² - 3(3x-1)² = 27х² - 3·(9х²-6х+1) = 27х² - 27х² +18х - 3 = 18х - 3 

1.
А) (10-х)² = 100 - 20х + х²
Б) (3x+0,5)² = 9х² + 3х + 0,25
В) (-4x+7y)² = 16х² + 2·(-4х)·7у + 49у² = 16х² - 56ху + 49у²
Г) (x²+y³)² = х⁴ + 2х²у³ + у⁶
2. 
А) y²+100 - 20y = у² - 20у + 100 = (у-10)²
Б) 49x²-42xy+9y² = (7х - 3у)²
3. 
А) (4x-2y)²+16xy = 16х² - 2·4х·2у + 4у² + 16ху = 16х² - 16ху + 4у² + 16ху = 
= 16х²+4у²
Б) 12x⁵ - 3(x⁵+2) = 12х⁵ - 3х⁵ - 6 = 9х⁵ - 6

Возможно в последнем в условии скобка в квадрате, тогда решение такое:

12x⁵ - 3(x⁵+2)² = 12х⁵ - 3(х¹⁰ + 4х⁵ + 4) = 12х⁵ - 3х¹⁰ - 12х⁵ - 12 = 
= - х¹⁰ - 12  
4,8(17 оценок)
Ответ:
vytriskoivan
vytriskoivan
09.06.2020

ответ:9.За умовою задачі, площа прямокутника дорівнює 32 м², тому:

x(x+4) = 32

x² + 4x - 32 = 0

Розв'яжемо це рівняння за до квадратного кореня:

x₁,₂ = (-b ± √(b² - 4ac)) / 2a

Замінюємо a = 1, b = 4, c = -32:

x₁,₂ = (-4 ± √(4² + 4·1·32)) / 2

x₁,₂ = (-4 ± 8) / 2

x₁ = -6, x₂ = 2

Оскільки ширина не може бути від'ємною, то x = 2.

Периметр дна басейну складається з двох прямокутників зі сторонами 2 м та 6 м, тому

периметр дна басейну:

P = 2(2 + 6) = 16 м.

10.Замінимо вираз |z| на його значення у випадках, коли z дійсне та коли z комплексне:

коли z дійсне та з >= 0, то |z| = z

коли z дійсне та z < 0, то |z| = -z

коли z комплексне, то |z| = sqrt(z * conj(z))

Отже, з урахуванням цих випадків, розв'язуємо рівняння:

z^2 - 6z = 0

або

z^2 - 6(-z) = 0

або

z^2 - 6sqrt(z * conj(z)) = 0

Факторизуємо:

z(z - 6) = 0

Отже, маємо два розв'язки: z = 0 та z = 6.

Перевіримо, що вони задовольняють вихідне рівняння:

для z = 0: 0^2 - 6|0| = 0, отже це розв'язок

для z = 6: 6^2 - 6|6| = 0, отже це також розв'язок

Отже, маємо два розв'язки: z = 0 та z = 6.

11.Для розв'язання цього рівняння використаємо метод добуткового :

Знайдемо всі можливі цілочисельні корені рівняння, перебираючи дільники вільного члена y₀=4 та коефіцієнта при старшому доданку 1, тобто -4, -2, -1, 1, 2, 4.

Ділимо рівняння на (y-корінь), де корінь - знайдений у першому кроці.

Розв'язуємо отримане квадратне рівняння.

Оскільки початкове рівняння має степінь 3, то може бути ще один корінь. Його можна знайти як частку від вільного члена та знайдених коренів.

Записуємо загальний розв'язок рівняння.

Отже, застосовуючи цей метод, маємо:

Перебираємо корені:

-4: (-4)³ - 4(-4)² - 4 + 4 = -64 + 64 - 4 + 4 = 0, тому y=-4 - корінь.

-2: (-2)³ - 4(-2)² - 2 + 4 = -8 - 16 - 2 + 4 = -22, кореня немає.

-1: (-1)³ - 4(-1)² - 1 + 4 = -1 - 4 - 1 + 4 = -2, кореня немає.

1: (1)³ - 4(1)² - 1 + 4 = 1 - 4 - 1 + 4 = 0, тому y=1 - корінь.

2: (2)³ - 4(2)² - 2 + 4 = 8 - 16 - 2 + 4 = -6, кореня немає.

4: (4)³ - 4(4)² - 4 + 4 = 64 - 64 - 4 + 4 = 0, тому y=4 - корінь.

Розв'язуємо отримані квадратні рівняння:

(y+4): y² - 3y + 1 = 0. Корені: y₁ = (3-√5)/2, y₂ = (3+√5)/2.

(y-1): y² - 3y - 4 = 0. Корені: y₃ = -1, y₄ = 4.

Шукаємо ще один корінь:

y₅ = y₀/(y₁-1

12.1)Підставляємо a = 32 в рівняння:

ar² - 8 = 0

32r² - 8 = 0

32r² = 8

r² = 8/32

r = ±√(8/32) = ±√(1/4) = ±1/2

Таким чином, корені рівняння при а = 32 дорівнюють ±1/2.

   2)Підставляємо один з коренів, наприклад, r = 18:

ar² - 8 = 0

32(18)² - 8 = 10304

Отже, при а = 10304 один з коренів рівняння дорівнює 18.

Объяснение:

4,6(16 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ