Для каждого задания нужно записать уравнение и решить его.
1) 3t + 5 = 5t + 13, 2) 3t + 17 = 2 · (5t - 5),
3t - 5t = 13 - 5, 3t + 17 = 10t - 10,
-2t = 8, 3t - 10t = - 10 - 17,
t = 8 : (-2) , -7t = -27,
t = -4 ; t = -27 : (-7),
t = 27/7 = 3 целых 6/7;
3) 3 · (3t - 11) = 5t - 17 , 4) (11 - 13t) - 7 = 8t + 11,
9t - 33 = 5t - 17, 4 - 13t = 8t + 11,
9t - 5t = -17 + 33 , -13t - 8t = 11 - 4,
4t = 16, -21t = 7,
t = 16 : 4, t = 7 : (-21),
t = 4 ; t = -1/3 ;
5) (0,5t + 3,1) + 8 = 0,5t - 4,9, 6) (81 - 8,3t) - (75 - 8,3t) = 3,
0,5t + 11,1 = 0,5t - 4,9, 81 - 8,3t - 75 + 8,3t = 3,
0,5t - 0,5t = - 4,9 - 11,1, 0t + 6 = 3,
0t = -16, 0t = 3 - 6,
нет решений; 0t = -3,
нет решений.
f(x) = -2x² - x + 5 - квадратичная функция, график - парабола с ветвями, направленными вниз.
I x₀ = -b / (2a) = 1/(-2) = -0,5; y₀ = 5; B(-0,5; 5,25) - вершина параболы
Ось симметрии - прямая x = x₀, то есть в нашем x = -0,5;
Пункт 4) задания мы решили!
II В качестве точек для построения берем:
III Строим график (см. рисунок)
1) При x = -0,3; y ≈ 4,5; при x = 1,2; y ≈ 0,9; при x = 3; y = -16 (здесь проще подставить в функцию...)
2) y = 5 при x = 0 и при x = -0,5; y = 2 при x = 1 и при x = -1,5; y = -1 при x = -2 и при x = 1,5;
3) Нули функции (точки пересечения графика с осью OX)
При x₁ ≈ -1,9 или x₂ ≈ 1,4; y = 0;
Промежутки знакопостоянства:
При x ∈ (-∞; x₁) ∪ (x₂; +∞), f(x) < 0 (x ∈ (-∞; -1,9) ∪ (1,4; +∞))
При x ∈ (x₁; x₂), f(x) > 0 (x ∈ (-1,9; 1,4))