Дана система уравнений :
{х+ Зу = 5, это прямая линия у = (-1/3)х + (5/3)
{х² + y² = 25, это окружность с центром в начале координат и радиусом 5.
Общая схема графического решения - начертить окружность и провести линию через 2 точки: х = 0, у = (5/3) и у = 0, х = 5.
Точки пересечения линий и есть решение.
Можно аналитически проверить его правильность.
{х+ Зу = 5, х = 5 - 3у подставить во второе уравнение.
{х² +y² = 25. (5 - 3у)² + у² = 25.
25 - 30у + 9у² + у² = 25. Решаем квадратное уравнение:
10у² - 30у = 0 или 10у(у - 3) = 0.
Получили 2 корня: у1 = 0 и у2 = 3, отсюда соответствующие координаты по оси Ох равны:
х1 = 5, х2 = -4.
ответ: 4.
Объяснение:
Одночлен со старшей степенью числителя будет иметь вид 2⁵⁰*x⁵⁰, одночлен со старшей степенью знаменателя - 2⁴⁸*x⁵⁰. Разделив числитель и знаменатель на x⁵⁰, получим в числителе выражение вида 2⁵⁰+a1/x+a2/x²+...ak/x⁵⁰, где a1, a2,..., ak - числовые коэффициенты, а в знаменателе - выражение вида 2⁴⁸+b1/x+b2/x²+...bk/x⁵⁰, где b1, b2,..., bk - также числовые коэффициенты. Так как при x⇒∞ все выражения, кроме 2⁵⁰ в числителе и 2⁴⁸ в знаменателе, стремятся к 0, то предел данной дроби равен 2⁵⁰/2⁴⁸=2²=4.