М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lol1027
lol1027
20.05.2021 05:55 •  Алгебра

Найдите все значений x, при которых значений выражений корень из (2x+8), корень из (3x-8), 1 являются тремя последовательными членами прогрессии.

👇
Ответ:
lenamarydina
lenamarydina
20.05.2021

в геометрической прогресии последующий член получается из предыдущего умножением на число

b_n = b_n_-_1*q^{n-1}

 


Найдите все значений x, при которых значений выражений корень из (2x+8), корень из (3x-8), 1 являютс
4,7(49 оценок)
Открыть все ответы
Ответ:
LaimZ
LaimZ
20.05.2021
Функцию у = f(x), х є Х, называют четной, если для любого значения х из множества X выполняется равенство f (-х) = f (х). Определение 2. Функцию у = f(x), х є X, называют нечетной, если для любого значения х из множества X выполняется равенство f (-х) = -f (х). Пример 1. Доказать, что у = х4 — четная функция. Решение. Имеем: f(х) = х4, f(-х) = (-х)4. Но (-х)4 = х4. Значит, для любого х выполняется равенство f(-х) = f(х), т.е. функция является четной. Аналогично можно доказать, что функции у — х2,у = х6,у — х8 являются четными. Пример 2. Доказать, что у = х3~ нечетная функция. Решение. Имеем: f(х) = х3, f(-х) = (-х)3. Но (-х)3 = -х3. Значит, для любого х выполняется равенство f (-х) = -f (х), т.е. функция является нечетной. Аналогично можно доказать, что функции у = х, у = х5, у = х7 являются нечетными. Мы с вами не раз уже убеждались в том, что новые термины в математике чаще всего имеют «земное» происхождение, т.е. их можно каким-то образом объяснить. Так обстоит дело и с четными, и с нечетными функциями. Смотрите: у — х3, у = х5, у = х7 — нечетные функции, тогда как у = х2, у = х4, у = х6 — четные функции. И вообще для любой функции вида у = х" (ниже мы специально займемся изучением этих функций), где n — натуральное число, можно сделать вывод: если n — нечетное число, то функция у = х" — нечетная; если же n — четное число, то функция у = хn — четная. Существуют и функции, не являющиеся ни четными, ни нечетными. Такова, например, функция у = 2х + 3. В самом деле, f(1) = 5, а f (-1) = 1. Как видите, здесь Функция Значит, не может выполняться ни тождество f(-х) = f (х), ни тождество f(-х) = -f(х). Итак, функция может быть четной, нечетной, а также ни той ни другой.
4,5(50 оценок)
Ответ:
Didei
Didei
20.05.2021
Количество таких чисел равно количеству перестановок 5 цифр, т.е. 5!=120. Если все эти числа упорядочить по старшей цифре, т.е. вначале выписать все числа начинающиеся с 1, потом с 4 и т.д. То количество чисел со старшей цифрой 1 равно 4!=24, количество чисел со старшей цифрой 4 также равно 24 и то же самое для 6, 7, 8. Т.е. первая цифра числа принимает каждое значение из {1,4,6,7,8} 24 раза. Вторая цифра ничем не отличается от первой, поэтому с ней та же ситуация. Т.к. каждое 5-значное число можно представить как 10000х+1000y+100z+10r+s, где х,y,z,r,s - цифры числа, то сумма всех таких чисел будет равна 10000*24*(1+4+6+7+8)+1000*24*(1+4+6+7+8)+...+24*(1+4+6+7+8)=24*26*(10000+1000+100+10+1)=
24*26*11111=6933264;
4,7(6 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ