Пусть t ч - время автобуса при старом расписании, тогда его средняя скорость составляла 325/t км/ч. 40 мин = 2/3 ч По новому расписанию время автобуса составляет (t- 2/3) ч, а средняя скорость равна 325/(t- 2/3) км/ч. По условию задачи, скорость движения по новому расписанию на 10 км/ч больше скорости автобуса по старому расписанию. Составим уравнение: 325/(t- 2/3) - 325/t =10 325/((3t-2)/3) -325/t =10 975/(3t-2) - 325/t = 10 |*t(3t-2) 975t - 975t + 650 = 10t(3t-2) 30t²-20t-650=0 3t²-2t-65=0 D=(-2)²-4*3*(-65)=784=28² t₁=(2+28)/6=5 t₂=(2-28)/6=-4.1/3<0 (лишний корень) t=5 ч - время автобуса по старому расписанию 325/5= 65 км/ч - скорость автобуса согласно старому расписанию 65+10=75 км/ч - скорость автобуса согласно новому расписанию ответ: 75 км/ч
Это линейная функция графиком которой является прямая ,чтобы построить прямую достаточно знать две точки х=0 тогда у =-3·0+4= 4 (0;4)-первая точка у=-2 -2=-3х+4 -3х=-2-4 -3х--6 х=-6÷(-3) х=2 (2;-2) вторая точка отмечаеш в декартовой системе координат эти точки и через них проводиш прямую это и будет график функции если координати точки удовлетворяют уравнению -значит точка пренадлежит графику а это значит что график проходит через точку А Подставим координаты точку и проверим -130=-3·42+4 -130=-132+4 -130 ≠-128 это значит что график не проходит через точку А(42;-130)
Объяснение:
Чтобы найти точки пересечения графиков достаточно их приравнять
2,7х=1,2х+7
2,7х-1,2х=7
1,5х=7
х=14/3
Значит координата точки пересения по х = 14/3=4 2/3
Чтобы найти по y достаточно подставить в любую из функций:
y=1.2*14/3+7=12/10*14/3+7=5.6+7=12.6
Значит точка пересечения имеет координаты (14/3;12.6)