В таблице.
Объяснение:
Заполнить таблицу:
a b c
4х²+5х-4=0 4 5 -4 Полное квадратное уравнение
-6х²+х+3=0 -6 1 3 Полное квадратное уравнение
15х-х²=0 -1 15 0 Неполное квадратное уравнение
7х²=0 7 0 0 Неполное квадратное уравнение
3х-х²+19=0 -1 3 19 Полное квадратное уравнение
2х²-14=0 2 0 -14 Неполное квадратное уравнение
2/3 х²-2х=0 2/3 -2 0 Неполное квадратное уравнение
х²+2-х=0 1 -1 2 Полное квадратное уравнение
Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.
вот ответ
раооаоаушшклкуш